Contents

Matrizen VII: Transponieren

Mit Konjugation ' Ohne Konjugation .'

F = rand(3,2)
F'
F + sqrt(-1)*F
F'
F = F + sqrt(-1)*F
F'
F.'
F =

    0.0318    0.0971
    0.2769    0.8235
    0.0462    0.6948


ans =

    0.0318    0.2769    0.0462
    0.0971    0.8235    0.6948


ans =

   0.0318 + 0.0318i   0.0971 + 0.0971i
   0.2769 + 0.2769i   0.8235 + 0.8235i
   0.0462 + 0.0462i   0.6948 + 0.6948i


ans =

    0.0318    0.2769    0.0462
    0.0971    0.8235    0.6948


F =

   0.0318 + 0.0318i   0.0971 + 0.0971i
   0.2769 + 0.2769i   0.8235 + 0.8235i
   0.0462 + 0.0462i   0.6948 + 0.6948i


ans =

   0.0318 - 0.0318i   0.2769 - 0.2769i   0.0462 - 0.0462i
   0.0971 - 0.0971i   0.8235 - 0.8235i   0.6948 - 0.6948i


ans =

   0.0318 + 0.0318i   0.2769 + 0.2769i   0.0462 + 0.0462i
   0.0971 + 0.0971i   0.8235 + 0.8235i   0.6948 + 0.6948i

Matrizen VIII: Funktionen

Rang der Matrix Determinante Inverse

rank(F)
A = [1 , 2 ; 3 , 4]
A
det(A)
inv(A)
inv(A)*A
ans =

     2


A =

     1     2
     3     4


A =

     1     2
     3     4


ans =

    -2


ans =

   -2.0000    1.0000
    1.5000   -0.5000


ans =

    1.0000         0
    0.0000    1.0000

Matrizen IX: Lineare Gleichungssysteme

b = [1;1]
x = inv(A)*b
A*x
x = A\b
b =

     1
     1


x =

   -1.0000
    1.0000


ans =

    1.0000
    1.0000


x =

    -1
     1

Matrizen X: Zugriff auf Teilmatrizen

clc
A = [1:3; 4:6; 7:9]
A(2,1)
A(2,:)
A(:,3)
A([3 1 2], 1:2)

diag(A)

E = ones(9);
E(3:7,3:7) = zeros(5)
A =

     1     2     3
     4     5     6
     7     8     9


ans =

     4


ans =

     4     5     6


ans =

     3
     6
     9


ans =

     7     8
     1     2
     4     5


ans =

     1
     5
     9


E =

     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1
     1     1     0     0     0     0     0     1     1
     1     1     0     0     0     0     0     1     1
     1     1     0     0     0     0     0     1     1
     1     1     0     0     0     0     0     1     1
     1     1     0     0     0     0     0     1     1
     1     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1     1

Matrizen XI: Manipulation von Matrizen und Vektoren

reshape: spaltenweise Ordnung bleibt gleich

clc
A = [1:3; 4:6]
A(:)
A = reshape(A,3,2)
A = reshape(A,1,6)
A = reshape(A,2,3)
%
% tril, triu
%
clc
A = round(5*rand(5,5))
tril(A)
triu(A)
triu(A,2)
triu(A,-1)
A =

     1     2     3
     4     5     6


ans =

     1
     4
     2
     5
     3
     6


A =

     1     5
     4     3
     2     6


A =

     1     4     2     5     3     6


A =

     1     2     3
     4     5     6


A =

     2     4     3     3     2
     5     4     4     1     3
     0     1     4     1     1
     2     2     1     2     4
     2     2     3     5     1


ans =

     2     0     0     0     0
     5     4     0     0     0
     0     1     4     0     0
     2     2     1     2     0
     2     2     3     5     1


ans =

     2     4     3     3     2
     0     4     4     1     3
     0     0     4     1     1
     0     0     0     2     4
     0     0     0     0     1


ans =

     0     0     3     3     2
     0     0     0     1     3
     0     0     0     0     1
     0     0     0     0     0
     0     0     0     0     0


ans =

     2     4     3     3     2
     5     4     4     1     3
     0     1     4     1     1
     0     0     1     2     4
     0     0     0     5     1

Matrizen XII: Löschen von Zeilen und Spalten

clc
A
B = tril(A,-2) + triu(A,2)
A(3,:)=[]
A(:,3)=[]
whos
B=B([1 2 4 5],[1 2 4 5])
A =

     2     4     3     3     2
     5     4     4     1     3
     0     1     4     1     1
     2     2     1     2     4
     2     2     3     5     1


B =

     0     0     3     3     2
     0     0     0     1     3
     0     0     0     0     1
     2     2     0     0     0
     2     2     3     0     0


A =

     2     4     3     3     2
     5     4     4     1     3
     2     2     1     2     4
     2     2     3     5     1


A =

     2     4     3     2
     5     4     1     3
     2     2     2     4
     2     2     5     1

  Name       Size             Bytes  Class      Attributes

  A          4x4                128  double               
  B          5x5                200  double               
  C          2x2x2               64  double               
  E          9x9                648  double               
  F          3x2                 96  double     complex   
  W          1x5                 40  double               
  a          1x4                 32  double               
  alpha      1x1                 16  double     complex   
  ans        5x5                200  double               
  b          2x1                 16  double               
  c          1x6                 48  double               
  dt         1x1                  8  double               
  f          1x1                  1  logical              
  g          1x1                  8  double               
  index      1x3                 24  double               
  s          4x1                 32  double               
  t          1x1                  1  logical              
  tt         1x7                 56  double               
  u          1x10                80  double               
  v          1x2                 32  double     complex   
  w          1x7                 56  double               
  x          2x1                 16  double               
  y          1x4                 32  double               
  z          1x4                 64  double     complex   


B =

     0     0     3     2
     0     0     1     3
     2     2     0     0
     2     2     0     0

Tensoren (Mehrdimensionale Arrays/Matrizen)

clc
C(:,:,1) = [1 2; 3 4]
C(:,:,2) = [5 6; 7 8]
whos
zeros(2,2,2,2)
whos
C(:,:,1) =

     1     2
     3     4


C(:,:,2) =

     5     6
     7     8


C(:,:,1) =

     1     2
     3     4


C(:,:,2) =

     5     6
     7     8

  Name       Size             Bytes  Class      Attributes

  A          4x4                128  double               
  B          4x4                128  double               
  C          2x2x2               64  double               
  E          9x9                648  double               
  F          3x2                 96  double     complex   
  W          1x5                 40  double               
  a          1x4                 32  double               
  alpha      1x1                 16  double     complex   
  ans        5x5                200  double               
  b          2x1                 16  double               
  c          1x6                 48  double               
  dt         1x1                  8  double               
  f          1x1                  1  logical              
  g          1x1                  8  double               
  index      1x3                 24  double               
  s          4x1                 32  double               
  t          1x1                  1  logical              
  tt         1x7                 56  double               
  u          1x10                80  double               
  v          1x2                 32  double     complex   
  w          1x7                 56  double               
  x          2x1                 16  double               
  y          1x4                 32  double               
  z          1x4                 64  double     complex   


ans(:,:,1,1) =

     0     0
     0     0


ans(:,:,2,1) =

     0     0
     0     0


ans(:,:,1,2) =

     0     0
     0     0


ans(:,:,2,2) =

     0     0
     0     0

  Name       Size             Bytes  Class      Attributes

  A          4x4                128  double               
  B          4x4                128  double               
  C          2x2x2               64  double               
  E          9x9                648  double               
  F          3x2                 96  double     complex   
  W          1x5                 40  double               
  a          1x4                 32  double               
  alpha      1x1                 16  double     complex   
  ans        4-D                128  double               
  b          2x1                 16  double               
  c          1x6                 48  double               
  dt         1x1                  8  double               
  f          1x1                  1  logical              
  g          1x1                  8  double               
  index      1x3                 24  double               
  s          4x1                 32  double               
  t          1x1                  1  logical              
  tt         1x7                 56  double               
  u          1x10                80  double               
  v          1x2                 32  double     complex   
  w          1x7                 56  double               
  x          2x1                 16  double               
  y          1x4                 32  double               
  z          1x4                 64  double     complex   

Laden von Matrizen

A = load('examplematrix.dat')
A =

     1     2     3
     4     5     6
     7     8     9

Speichern von Variablen in einer Datei

save

alle Variablen aus dem Workspace

save examplesave.mat

% nur ausgewaehlte Variablen
save('testsave.mat', 'A')

Logische Operationen

Variablentyp: Wahrheitswert true(=1) oder false(=0) Logisches und && Logisches oder Vergleiche liefern Wahrheitswert 1 oder 0

a=1:4
b=linspace(3,6,4)

clc
f = false
t = true
f || t
f && t
a > c
a > b
a
b
find(a > b)
a =

     1     2     3     4


b =

     3     4     5     6


f =

     0


t =

     1


ans =

     1


ans =

     0

Error using >
Matrix dimensions must agree.

Error in vektorenundmatrizenII (line 111)
a > c