Contents
Funktionen Teil I
close all set(0,'DefaultLineLineWidth',2) set(0,'DefaultLineMarkerSize',10) set(0,'DefaultAxesFontSize',24)
t=-5:0.2:5; plot(t,sin(t)+cos(t)+1./sqrt(1+t.^2))
Inline Objekte
fun = inline('sin(t)+cos(t)+1./sqrt(1+t.^2)') fun(0) hold on plot(t,fun(t),'rx') bfun = inline('sin(n*x)') afun = inline('sin(n*x)','x','n') bfun(1,2) bfun(1,2) - afun(2,1) char(fun) argnames(fun) formula(fun)
fun =
Inline function:
fun(t) = sin(t)+cos(t)+1./sqrt(1+t.^2)
ans =
2
bfun =
Inline function:
bfun(n,x) = sin(n*x)
afun =
Inline function:
afun(x,n) = sin(n*x)
ans =
0.9093
ans =
0
ans =
sin(t)+cos(t)+1./sqrt(1+t.^2)
ans =
't'
ans =
sin(t)+cos(t)+1./sqrt(1+t.^2)
@ funtion handle
ermoeglicht -die Verkettung von Funktionen
f = @(x) sin(x); g = @(x) cos(x); gf = @(x) f(g(x)); % Verkettung von Funktionen figure plot(t,f(t),'x',t,g(t),'o',t,gf(t),'p') hold on plot(t,sin(cos(t)))
mehrere Argumente
figure
h = @(x,y) sin(x).*cos(y).*exp(-x.^2-y.^2);
[xx,yy]=ndgrid([-2:0.2:2],[-2:0.2:2]);
mesh(xx,yy,h(xx,yy))
isa(h,'function_handle')
ans =
1
A = [1 2 4] B = [-1 4 7] AxpBy = @(x,y) A*x + B*y; AxpBy(1,1) A = [-2 3 7] AxpBy(1,1) AxpBy = @(x,y) A*x + B*y; AxpBy(1,1)
A =
1 2 4
B =
-1 4 7
ans =
0 6 11
A =
-2 3 7
ans =
0 6 11
ans =
-3 7 14