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KLAUSUR zur “Numerik I” mit Losungen

Aufgabe 1: (10 Punkte) [ wahr | falsch |

1.

2.

10.

Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ | x ]

Der Clenshaw Algorithmus erlaubt es, ein Polynom in der Tschebyscheff-Darstellung stabil aus-
zuwerten. [ x| ]

. Der Aufwand zur Berechnung der Cholesky-Zerlegung einer symmetrischen, positiv definiten

Matrix A € R™" liegt in O(n?). [ | x ]

Betrachtet man den Raum der reellwertigen stetigen Funktionen auf dem Intervall [0, 1] mit der
Supremumsnorm und R mit dem Betrag als Norm, so ist die relative Kondition der Integration
von 0 bis 1 einer stetige Funktion kleiner als 2. [ | x ]

Die Multiplikation zweier reeller Zahlen ist stabil im Sinne der Riickwértsanalysis.

. Die Division zweier reller Zahlen ist stabil im Sinne der Vorwértsanalysis. [ | x ]

Ist A € R™™ invertierbar und b € R™, so konvergiert fiir F'(z) = Az + b das Newton-Verfahren
zur Losung von F'(x) = 0 in endlich vielen Schritten fiir beliebige Startwerte gegen eine Losung.

[ <[]

. Fiir eine stetig differenzierbare Funktion F' konvergiert das Newton-Verfahren fiir beliebige Start-

werte gegen eine Losung. [ | x ]

Die implizite Mittelpunktsregel zur Losung eines Anfangswertproblems, gegeben durch die Ite-
rationsvorschrift

h Yn + Yn+1
2 2 ’

Ynt+1 =Yn + hf (tn + 5
ist ein Runge-Kutta-Verfahren. [ x| ]

Das Verfahren yn4+1 = yn + hf(tn + h/2,yy,) ist ein explizites Runge-Kutta-Verfahren.
[ x| ]



Aufgabe 2: (5 + 2 Punkte)

a) Konstruieren Sie eine zweistufige, symmetrische Quadraturformel auf [0, 1] maximaler Ordnung.

b) Bestimmen Sie die Ordnung dieser Quadraturformel, oder begriinden Sie warum diese Quadra-
turformel eine bestimmte Ordnung hat.

Losung 2:

a) Die maximale Ordnung einer s-stufigen Quadraturformel ist 2s (Gauf}). Hier ist s = 2. Wir konstru-
ieren also die zweistufige GauB-Quadraturformel. Aufgrund der Symmetrie gilt bereits by = by = %
(2P.)

Wir berechnen die Knoten nun mit Hilfe der Ordnungsbedingungen. Die erste Ordnungsbedingung
liefert eine Gleichung fiir die Gewichte.
by +by=1

Aufgrund der Symmetrie by = bo ist also by = by = % Nun reicht es aus, die dritte Ordnungsbedingung
zu betrachten, da dann sofort folgt, dass die Quadraturformel die Ordnung 4 hat (Symmetrische
Quadraturformeln haben gerade Ordnung). Es macht keinen Sinn die vierte Ordnungsbedingung zu
betrachten!

Zunichst gilt ¢; = 1 — cy. Zusammen mit der Ordnungsbedingung byc? + baca = % folgt

1 1 1
1) o2 =
2( 02)+202 3
1 15 145 1
= §—C2+§CQ+§C2—§:O
1
= C%—CQ‘f‘é:O.
Es folgt
JSE S R N WRE S B
2 4 6 26 2 2V3
Damit haben wir direkt beide Knoten ¢y 2 = % + ? gefunden und es gilt (2P.)
1,(1 3\ 1,.(1 V3
QN ~357 (2 - 6) 3/ <2 +6> : (1P.)

Alternative 1: Die Knoten lassen sich auch mit der Orthogonalitéitsbedingung an das Knotenpolynom
bestimmen

1
/ (t—c1)(t—co)dt = 0
0
1
/0 (t—c)(t—(1—=c1))dt = 0 Symmetrie

1
/t2—t—c1(c1—1)dt =0
0

1 1
3—5—01(01—1):0
L_2, 0
—— =i+ =
6
Damitistclzézt%undQ:%?%.



Alternative 2 (ohne Symmetrie): Die Knoten lassen sich auch mit der Orthogonalitdtsbedingung an
das Knotenpolynom bestimmen

1 1
/ (t—c1)(t —co)dt =0 und / (t—c1)(t—co)tdt =0
0 0

1 1
/ t2 — (c1 4+ o)t + c1codt =0 und / t3 — (c1 4 co)t? + cretdt =0
0 0

1 1 1 1 1
3 5(cl + c2) + c1cedt =0 und 1 (c1 + Cz)g + 56162dt =0

LGS fiir 01 = ¢1 + ¢ und 09 = cjco.

~1/2 1 o\ [ -1/3
~1/3 1/2 oy )\ —1/4
mit Losung o1 = 1,09 = 1/6. Damit ist ¢; + ¢o = 1 und ¢1¢2 = 1/6. Daraus folgt
1 , 1
Cl+6761:1¢>01+6—01:0
und wieder ist ¢ = % + ?.
b) Die obige Quadraturformel ist die zweistufige Gau-Quadratur und hat die Ordnung 2s = 4. (2P.)
Aufgabe 3: (7 + 2 + 5 Punkte)

a) Bestimmen Sie mit Hilfe des Newtonschen dividierten Differenzenschemas das Interpolationspo-
lynom p zu den Daten xy = —1, f(xg) =4, x1 =0, f(x1) = =2, 29 = 2, f(x2) =1, und x3 = —2,
f(.rg) = —5.

b) Werten das Interpolationspolynom p mit Hilfe des Hornerschemas an der Stelle x = 3 aus.

c¢) Bestimmen Sie mit Hilfe des Newtonschen dividierten Differenzenschemas das Polynom kleinsten
Grades ¢, das die Daten xg = —1, f(zg) = 4, x1 = 0, f(x1) = =2 und 25 = 2, f(z2) = 1
interpoliert und zusitzlich ¢'(z¢) = —4 erfiillt.

Loésung 3:

a) Aufstellen des Newton-Tableaus:

z;  f(z:)
-1
0 -2 5 P
3 5 (4P-)
2 2
2 1 0
3
2
-2 -5
Es folgt
) )
px)=4—-6(x+1)+ -(z+ 1)z + =(z+ 1)z(x —2) (3P.)

2 2

) ) ) )



b) Auswertung an der Stelle z = 3 mit dem Horner-Schema:

oy =

5

5 5
— oy 222
i (3 )+2 2+2 5

| O] Ot

ay=5-3—-6=9
as=9(3+1)+4=236-+4=40 = p(3).

c) Aufstellen des Newton-Tableaus:

-1
~1 4
-6 %
0o -2 2
3 2
2
2 1
Es folgt

w

gz)=4—4z+1) -2 +1)2+ S(z+1)%

\V)

3
:474x+472x274x72+§x3+3x27

(2P.)
(2P.)
(3P.)
3
§$



Aufgabe 4: (5 Punkte)

Leiten Sie fir n € N, n > 3 das lineare Gleichungssystem fiir die Parameter 7; = s'(z;), j =1,...,n
fiir den sogenannten periodischen kubischen Spline her, d.h. fiir den kubischen Spline, der zusétzlich
die Bedingungen s'(a) = s'(b) und s”(a) = s”(b) erfiillt. Wie sieht die Matrix und der rechte Seite
Vektor aus, die Sie mit ihrer Herleitung erhalten?

Erinnerung:

Zu einer Unterteilung des Intervalls [a,b], a = xg < 1 < ...z, = b ist der kubische Spline zu den
Daten y; = f(x;) fir j = 0,...,n diejenige zweimal stetig differenzierbare und stickweise kubische
Funktion s, die s(xj) = f(x;) j =0,...,n erfillt. In der Vorlesung wurde gezeigt, dass

8l(2s 1,2, () = Yic1 + (x — zio1)0y[2io1, 7]+
(@ — xi—1)(@ — @) («
(w5 — xi-1)?
Sl iwswiea] () = i + (@ — 24) 0y i, w1 ]+
(z —xi)(z — zi11)
(Tig1 — l‘z‘)2

i — 0Y[wi—1, Ti])(® — mi—1) + (Tie1 — dy[zi1, @i])(z — 7))

((Tit1 — y[wi, wia])(x — @3) + (173 — Sy[wi, wisa]) (2 — @ig1))

gilt, wobei dy[z;—1,x;] und dy|x;, xi+1] die ersten dividierten Differenzen sind. Es ist

/I‘

(—233 +xi—1 + xi)éy[xi_l, IL’Z] " (6$ —4dx;_1 — Q.Ti)Ti -+ (61’ —4x; — 2:6,‘_1)7'1‘_1

S
(i — mi_1)? (zi — 2i1)?

[Ti—1,24] (IIJ) =06

(=22 + x; + Ti41)0y[xs, Tiy1) N (62 — dx; — 2xi41)Tiv1 + (62 — dxiq — 224)7

3”’[:1:1',:1:1'+1] ($) =0

(i1 — x4)? (Tiy1 — ;)?
Diese Resultate konnen Sie ohne Beweis verwenden.
Losung 4:
Definiere zunéchst h; = x; — x;_1. Wir setzen s” (2511 (x;) = §" [zi7$i+1]($i). (Idee: 2P.)
Es gilt
I (x) -6 (—2%2‘ + Ti—1 + xi)éy[xi_l, sz] T (633Z — 4.%‘_1 — 21%)7} -+ (63:2 — 41,‘1' — 2a:i_1)7¢+1
frimp ] (i — @i-1)? (2 — 3i-1)?
__ghidylzi-v,zi] | AhiTi 4 2hiTio
2 2
o —653/[%,'_1,1‘2'] i 4Ti + 27—2’—1
- h; h; '

Analog erhalten wir

. 65y[xi,azi+1] B 2741 + 47;

"
[zi,i+1] (331) -

hit1 hit1

Daraus folgt insgesamt

—6(5y[xi_1,xi] " 471 4+ 27,4 _ 65y[:ci,mi+1] _ 27’1‘_;,_1 + 47;
hi hi hiv1 hit1

Ti—1 1 1 ) Tit1 (5y[$i—17 x| dylwi, $i+1]>
& +27 | — + + =3 + .
hi ( hi  hiq hit1 h; hiv1




Wegen der periodischen Randbedingung s'(a) = s'(b) folgt 79 = 7, so dass das Gleichungssystem die

Form

hat. Hierbei ist

(o (1
2 (& +

1
ha

1 1
ho ha

1
h1

1 1
o2k
Oyls, xiq1]

4 =3 <5y[$i—1,$i] n

h;

Beachte: Aufgrund der Periodizitét gilt hyy1 = hq.

hiv1

)

T1 dq

Tn

(2P. Matrix, 1P. Vektor)

Hinweis: Die obige Darstellung ist nicht eindeutig, z. B. kann zusétzlich 79 mit der Bedingung 7y = 7,

hinzugefiigt werden!



N =

[

Aufgabe 5: (7 Punkte)

Die Schurzerlegung einer Matrix A € R™*" ist, falls sie existiert, eine Zerlegung A = QT RQ der
Matrix A mit einer orthogonalen Matrix () und einer rechten oberen Dreiecksmatrix R.

Ausgehend von der Schurzerlegung-Zerlegung einer invertierbaren Matrix A € R™*"™ soll fiir einen
Spaltenvektor b € R™ das lineare Gleichungssystem Az = b gelost werden. Schreiben Sie dazu den
Pseudocode einer Funktion SchurLGS mit der Signatur SchurLGS(Q,R,b). Neben den elementaren
arithmetischen Operationen +, —, *, / und Programmsteueranweisungen wie if, for, while kdénnen
Sie die Multiplikation von Skalaren mit Matrixen und Vektoren, die Matrix-Vektor-Multiplikation, das
Transponieren von Matrizen und die Summation Zi’: ., verwenden, nicht aber Befehle zum Losen von
linearen Gleichungsystemen oder zum Invertieren von Matrizen.

Losung 5:

Da A = QTRQ mit @ orthogonal und R obere rechte Dreiecksmatrix ist die Aufgabe “Lose Az = b”
gleichbedeutend mit QT RQ = b bzw. RQx = Qb. Letzteres System kann man mittels Riickwiirtssub-
stitution l6sen und man erhilt Qz = y bzw. = QT'y als gesuchte Losung des urspriinglichen Systems.
(Idee: 2P.)

Algorithmus 1 : Pseudo-Code
x = SchurLGS(Q, R, b)

Berechne b = Qb; (1P.)
fori=mn,...,1do
vi = - (li' - X %‘yj>; (3P.)
j=it1
end

Berechne » = Qy; (1P.)




Aufgabe 6: (4 + 3 Punkte)

Zur Losung des Anfangswertproblems

y'(t) = ftyt)
y(to) = o

a) Geben Sie die Iterationsvorschrift an, die man erhilt wenn man dieses Verfahren zur Losung der
linearen Differentialgleichung y/(t) = Ay(t) verwendet.

b) Zeigen Sie, dass fiir eine hinreichend oft stetig differenzierbare Funktion f der lokale Fehler
ly(to +h) — y1l| in O(h?) liegt.

Loésung 6:

a) Allgemein gilt
Yi=y,+0 }/é:yn“‘hf(tnayl)

und damit " "
Yntl = Yn + §f(tnyyn) + §f(tn + h7yn + hf(tmyn))- (2P')

Sei nun f(¢,y(t)) = Ay(t). Dann folgt
h h hoy
Yntl = Yn + §Ayn + §A(yn + hAy,)= I+ hA+ §A Yn.- (2P./4P.)

b) Sei
Y1 =yo+ gf(to, Yo) + gf(to + h, yo + hf(to, y0))

die numerische Losung nach einem Schritt. Taylor-Entwicklung von y(tg 4+ k) im Punkt ¢y liefert

y(to + h) = y(to) + hy'(to) + O(h?).
Da y(tg) = yo und y'(to) = f(to,yo) erhilt man

y(to+ h) = yo + hf(to, yo) + O(h?). (1P.)
Wir definieren g(h) = f (to + h,yo + hf(to, yg)). Taylor-Entwicklung von g im Punkt 0 ergibt

g(h) = g(0) + O(h).

Nun gilt

y(to+ ) —y1 = yo + hf(to, o) + O(h*) — yo — gf(t()ayﬂ) - gf(to + h,yo + hf(toayo))J

=g(h)

= hf(to,0) + O(H?) — = F(10,30) ~ & (F(to,0) + O(h)

= O(h?). (2P.)

Damit liegt der lokale Fehler in O(h?). Geht man bei den Taylor-Entwicklungen einen Schritt weiter,
so kann man analog zeigen, dass der lokale Fehler sogar in O(h?) liegt.



