
MATHEMATISCHES INSTITUT

PROF. DR. ACHIM SCHÄDLE 9.8.2017

KLAUSUR zur “Numerik I” mit Lösungen

Aufgabe 1: (10 Punkte) [ wahr | falsch ]

1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s2. [ | × ]

2. Der Clenshaw Algorithmus erlaubt es, ein Polynom in der Tschebyscheff-Darstellung stabil aus-
zuwerten. [ × | ]

3. Der Aufwand zur Berechnung der Cholesky-Zerlegung einer symmetrischen, positiv definiten
Matrix A ∈ Rn×n liegt in O(n2). [ | × ]

4. Betrachtet man den Raum der reellwertigen stetigen Funktionen auf dem Intervall [0, 1] mit der
Supremumsnorm und R mit dem Betrag als Norm, so ist die relative Kondition der Integration
von 0 bis 1 einer stetige Funktion kleiner als 2. [ | × ]

5. Die Multiplikation zweier reeller Zahlen ist stabil im Sinne der Rückwärtsanalysis.
[ × | ]

6. Die Division zweier reller Zahlen ist stabil im Sinne der Vorwärtsanalysis. [ | × ]

7. Ist A ∈ Rn×n invertierbar und b ∈ Rn, so konvergiert für F (x) = Ax+ b das Newton-Verfahren
zur Lösung von F (x) = 0 in endlich vielen Schritten für beliebige Startwerte gegen eine Lösung.

[ × | ]

8. Für eine stetig differenzierbare Funktion F konvergiert das Newton-Verfahren für beliebige Start-
werte gegen eine Lösung. [ | × ]

9. Die implizite Mittelpunktsregel zur Lösung eines Anfangswertproblems, gegeben durch die Ite-
rationsvorschrift

yn+1 = yn + hf

(
tn +

h

2
,
yn + yn+1

2

)
,

ist ein Runge-Kutta-Verfahren. [ × | ]

10. Das Verfahren yn+1 = yn + hf(tn + h/2, yn) ist ein explizites Runge-Kutta-Verfahren.
[ × | ]



Aufgabe 2: (5 + 2 Punkte)

a) Konstruieren Sie eine zweistufige, symmetrische Quadraturformel auf [0, 1] maximaler Ordnung.

b) Bestimmen Sie die Ordnung dieser Quadraturformel, oder begründen Sie warum diese Quadra-
turformel eine bestimmte Ordnung hat.

Lösung 2:

a) Die maximale Ordnung einer s-stufigen Quadraturformel ist 2s (Gauß). Hier ist s = 2. Wir konstru-
ieren also die zweistufige Gauß-Quadraturformel. Aufgrund der Symmetrie gilt bereits b1 = b2 = 1

2 .
(2P.)

Wir berechnen die Knoten nun mit Hilfe der Ordnungsbedingungen. Die erste Ordnungsbedingung
liefert eine Gleichung für die Gewichte.

b1 + b2 = 1

Aufgrund der Symmetrie b1 = b2 ist also b1 = b2 = 1
2 . Nun reicht es aus, die dritte Ordnungsbedingung

zu betrachten, da dann sofort folgt, dass die Quadraturformel die Ordnung 4 hat (Symmetrische
Quadraturformeln haben gerade Ordnung). Es macht keinen Sinn die vierte Ordnungsbedingung zu
betrachten!

Zunächst gilt c1 = 1− c2. Zusammen mit der Ordnungsbedingung b1c
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Damit haben wir direkt beide Knoten c1,2 = 1
2 ±
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6 gefunden und es gilt (2P.)
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Alternative 1: Die Knoten lassen sich auch mit der Orthogonalitätsbedingung an das Knotenpolynom
bestimmen ∫ 1

0
(t− c1)(t− c2)dt = 0∫ 1

0
(t− c1)(t− (1− c1))dt = 0 Symmetrie∫ 1

0
t2 − t− c1(c1 − 1)dt = 0
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√
3
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Alternative 2 (ohne Symmetrie): Die Knoten lassen sich auch mit der Orthogonalitätsbedingung an
das Knotenpolynom bestimmen∫ 1

0
(t− c1)(t− c2)dt = 0 und
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(t− c1)(t− c2)tdt = 0∫ 1
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)
mit Lösung σ1 = 1, σ2 = 1/6. Damit ist c1 + c2 = 1 und c1c2 = 1/6. Daraus folgt
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√
3
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b) Die obige Quadraturformel ist die zweistufige Gauß-Quadratur und hat die Ordnung 2s = 4. (2P.)

Aufgabe 3: (7 + 2 + 5 Punkte)

a) Bestimmen Sie mit Hilfe des Newtonschen dividierten Differenzenschemas das Interpolationspo-
lynom p zu den Daten x0 = −1, f(x0) = 4, x1 = 0, f(x1) = −2, x2 = 2, f(x2) = 1, und x3 = −2,
f(x3) = −5.

b) Werten das Interpolationspolynom p mit Hilfe des Hornerschemas an der Stelle x = 3 aus.

c) Bestimmen Sie mit Hilfe des Newtonschen dividierten Differenzenschemas das Polynom kleinsten
Grades q, das die Daten x0 = −1, f(x0) = 4, x1 = 0, f(x1) = −2 und x2 = 2, f(x2) = 1
interpoliert und zusätzlich q′(x0) = −4 erfüllt.

Lösung 3:

a) Aufstellen des Newton-Tableaus:

xi f(xi)
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5
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2 1 0
3
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−2 −5

(4P.)

Es folgt
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b) Auswertung an der Stelle x = 3 mit dem Horner-Schema:
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α2 = 5 · 3− 6 = 9

α3 = 9(3 + 1) + 4 = 36 + 4 = 40 = p(3). (2P.)

c) Aufstellen des Newton-Tableaus:

xi f(xi)

−1 4

-4

−1 4 -2

−6 3
2

0 −2 5
2

3
2

2 1

(2P.)

Es folgt
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Aufgabe 4: (5 Punkte)

Leiten Sie für n ∈ N, n ≥ 3 das lineare Gleichungssystem für die Parameter τj = s′(xj), j = 1, . . . , n
für den sogenannten periodischen kubischen Spline her, d.h. für den kubischen Spline, der zusätzlich
die Bedingungen s′(a) = s′(b) und s′′(a) = s′′(b) erfüllt. Wie sieht die Matrix und der rechte Seite
Vektor aus, die Sie mit ihrer Herleitung erhalten?

Erinnerung:

Zu einer Unterteilung des Intervalls [a, b], a = x0 < x1 < . . . xn = b ist der kubische Spline zu den
Daten yj = f(xj) für j = 0, . . . , n diejenige zweimal stetig differenzierbare und stückweise kubische
Funktion s, die s(xj) = f(xj) j = 0, . . . , n erfüllt. In der Vorlesung wurde gezeigt, dass

s|[xi−1,xi](x) = yi−1 + (x− xi−1)δy[xi−1, xi]+

(x− xi−1)(x− xi)
(xi − xi−1)2

((τi − δy[xi−1, xi])(x− xi−1) + (τi−1 − δy[xi−1, xi])(x− xi))

s|[xi,xi+1](x) = yi + (x− xi)δy[xi, xi+1]+

(x− xi)(x− xi+1)

(xi+1 − xi)2
((τi+1 − δy[xi, xi+1])(x− xi) + (τi − δy[xi, xi+1])(x− xi+1))

gilt, wobei δy[xi−1, xi] und δy[xi, xi+1] die ersten dividierten Differenzen sind. Es ist
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+
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(xi+1 − xi)2
+

(6x− 4xi − 2xi+1)τi+1 + (6x− 4xi+1 − 2xi)τi
(xi+1 − xi)2

Diese Resultate können Sie ohne Beweis verwenden.

Lösung 4:

Definiere zunächst hi = xi − xi−1. Wir setzen s′′
∣∣
[xi−1,xi]

(xi) = s′′
∣∣
[xi,xi+1]

(xi). (Idee: 2P.)

Es gilt

s′′
∣∣
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+
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Wegen der periodischen Randbedingung s′(a) = s′(b) folgt τ0 = τn, so dass das Gleichungssystem die
Form 
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hat. Hierbei ist

di = 3

(
δy[xi−1, xi]

hi
+
δy[xi, xi+1]

hi+1

)
.

Beachte: Aufgrund der Periodizität gilt hn+1 = h1. (2P. Matrix, 1P. Vektor)

Hinweis: Die obige Darstellung ist nicht eindeutig, z. B. kann zusätzlich τ0 mit der Bedingung τ0 = τn
hinzugefügt werden!



Aufgabe 5: (7 Punkte)

Die Schurzerlegung einer Matrix A ∈ Rn×n ist, falls sie existiert, eine Zerlegung A = QTRQ der
Matrix A mit einer orthogonalen Matrix Q und einer rechten oberen Dreiecksmatrix R.

Ausgehend von der Schurzerlegung-Zerlegung einer invertierbaren Matrix A ∈ Rn×n soll für einen
Spaltenvektor b ∈ Rn das lineare Gleichungssystem Ax = b gelöst werden. Schreiben Sie dazu den
Pseudocode einer Funktion SchurLGS mit der Signatur SchurLGS(Q,R,b). Neben den elementaren
arithmetischen Operationen +,−, ∗, / und Programmsteueranweisungen wie if, for, while können
Sie die Multiplikation von Skalaren mit Matrixen und Vektoren, die Matrix-Vektor-Multiplikation, das
Transponieren von Matrizen und die Summation

∑b
i=a verwenden, nicht aber Befehle zum Lösen von

linearen Gleichungsystemen oder zum Invertieren von Matrizen.

Lösung 5:

Da A = QTRQ mit Q orthogonal und R obere rechte Dreiecksmatrix ist die Aufgabe “Löse Ax = b”
gleichbedeutend mit QTRQ = b bzw. RQx = Qb. Letzteres System kann man mittels Rückwärtssub-
stitution lösen und man erhält Qx = y bzw. x = QT y als gesuchte Lösung des ursprünglichen Systems.
(Idee: 2P.)

Algorithmus 1 : Pseudo-Code

1 x = SchurLGS(Q, R, b)

2 Berechne b̃ = Qb; (1P.)
3 for i = n, . . . , 1 do

4 yi = 1
rii

(
b̃i −

n∑
j=i+1

rijyj

)
; (3P.)

5 end
6 Berechne x = QT y; (1P.)



Aufgabe 6: (4 + 3 Punkte)

Zur Lösung des Anfangswertproblems

y′(t) = f(t, y(t))

y(t0) = y0

kann man folgendes durch sein Butcher-Tableau gegebene Runge-Kutta-Verfahren verwenden:

0 0 0
1 1 0

1
2

1
2

a) Geben Sie die Iterationsvorschrift an, die man erhält wenn man dieses Verfahren zur Lösung der
linearen Differentialgleichung y′(t) = Ay(t) verwendet.

b) Zeigen Sie, dass für eine hinreichend oft stetig differenzierbare Funktion f der lokale Fehler
||y(t0 + h)− y1|| in O(h2) liegt.

Lösung 6:

a) Allgemein gilt
Y1 = yn + 0 Y2 = yn + hf(tn, Y1)

und damit

yn+1 = yn +
h

2
f(tn, yn) +

h

2
f
(
tn + h, yn + hf(tn, yn)

)
. (2P.)

Sei nun f
(
t, y(t)

)
= Ay(t). Dann folgt

yn+1 = yn +
h

2
Ayn +

h

2
A(yn + hAyn)=

(
I + hA+

h

2
A2

)
yn. (2P./4P.)

b) Sei

y1 = y0 +
h

2
f(t0, y0) +

h

2
f
(
t0 + h, y0 + hf(t0, y0)

)
die numerische Lösung nach einem Schritt. Taylor-Entwicklung von y(t0 + h) im Punkt t0 liefert

y(t0 + h) = y(t0) + hy′(t0) +O(h2).

Da y(t0) = y0 und y′(t0) = f(t0, y0) erhält man

y(t0 + h) = y0 + hf(t0, y0) +O(h2). (1P.)

Wir definieren g(h) = f
(
t0 + h, y0 + hf(t0, y0)

)
. Taylor-Entwicklung von g im Punkt 0 ergibt

g(h) = g(0) +O(h).

Nun gilt

y(t0 + h)− y1 = y0 + hf(t0, y0) +O(h2)− y0 −
h

2
f(t0, y0)−

h

2
f
(
t0 + h, y0 + hf(t0, y0)

)︸ ︷︷ ︸
=g(h)

= hf(t0, y0) +O(h2)− h

2
f(t0, y0)−

h

2
(f(t0, y0) +O(h))

= O(h2). (2P.)

Damit liegt der lokale Fehler in O(h2). Geht man bei den Taylor-Entwicklungen einen Schritt weiter,
so kann man analog zeigen, dass der lokale Fehler sogar in O(h3) liegt.


