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1 Lektion 9
1.1 Gleichungssysteme
Zu

𝐹 ∶ ℝ𝑛 → ℝ𝑚 ⎡⎢
⎣

𝑥0
⋮

𝑥𝑛−1

⎤⎥
⎦⏟

=𝑥

↦ ⎡⎢
⎣

𝐹0(𝑥0, … 𝑥𝑛−1)
⋮

𝐹𝑚−1(𝑥0, … , 𝑥𝑛−1)
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐹(𝑥)

suche 𝑥, so, dass 𝐹(𝑥) = 0.
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[1]: #%matplotlib notebook
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [4, 3]
from sympy import *
a, b = symbols('a b')
x = symbols('x:2')
init_printing()
x # x ist ein Tupel mit zwei zwei Symbolen

[1]: (𝑥0, 𝑥1)

1.1.1 Lineare Systeme

Das machen wir nächste Woche ausführlicher, sobald wir Matrizen eingeführt haben.

[2]: lgs = (Eq(x[0]+x[1], a), Eq(2*x[0]-b*x[1], 3))
lgs

[2]: (𝑥0 + 𝑥1 = 𝑎, −𝑏𝑥1 + 2𝑥0 = 3)

[3]: sol = linsolve(lgs, x)
sol

[3]:
{(𝑎𝑏 + 3

𝑏 + 2 , 2𝑎 − 3
𝑏 + 2 )}

[4]: sol = solve(lgs, x)
sol

[4]:
{𝑥0 ∶ 𝑎𝑏 + 3

𝑏 + 2 , 𝑥1 ∶ 2𝑎 − 3
𝑏 + 2 }

1.1.2 Nichtlineare Systeme

[5]: nls = [Eq(x[0]**2+x[1]**2, 1), Eq(x[0], x[1])]
nls

[5]: [𝑥2
0 + 𝑥2

1 = 1, 𝑥0 = 𝑥1]

[6]: lsg = nonlinsolve(nls, x)
lsg

[6]:
{(−

√
2

2 , −
√

2
2 ) , (

√
2

2 ,
√

2
2 )}

[7]: lsg = solve(nls, x, )
lsg
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[7]:
[(−

√
2

2 , −
√

2
2 ) , (

√
2

2 ,
√

2
2 )]

[8]: nls

[8]: [𝑥2
0 + 𝑥2

1 = 1, 𝑥0 = 𝑥1]

[9]: xn = np.linspace(-2 , 2, 100)
X = np.meshgrid(xn, xn) # X ist Tupel aus X0, X1
fig, ax = plt.subplots()
ax.contour(*X, lambdify(x, nls[0].lhs-nls[0].rhs)(*X), [0], colors='blue')
ax.contour(*X, lambdify(x, nls[1].lhs-nls[1].rhs)(*X), [0], colors='green')
ax.axis('equal');

[10]: # alternativ
xn = np.linspace(-2 , 2, 100)
X, Y = np.meshgrid(xn, xn)
fig, ax = plt.subplots()
ax.contour(X, Y, lambdify((x[0], x[1]), nls[0].lhs-nls[0].rhs)(X, Y), [0],␣

↪colors='blue')
ax.contour(X, Y, lambdify((x[0], x[1]), nls[1].lhs-nls[1].rhs)(X, Y), [0],␣

↪colors='green')
ax.axis('equal');
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[11]: x, y = symbols('x y') # jetzt ist x ein einziges Symbol
f = x**2 + y**2 + 3 * x**2 * y - y**3
g = x**2 + y**2
xn = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(xn, xn)
fig, ax = plt.subplots()
ax.contour(X, Y, lambdify((x, y), f)(X, Y), [0], colors='blue')
ax.contour(X, Y, lambdify((x, y), g)(X, Y), [4], colors='red') # g(x,y) = 4␣

↪Hoehenlinie
ax.axis('equal');
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[12]: sol = solve([f, g-4] )
lsg = sol[0]
lsg

[12]: ⎧{
⎨{⎩

𝑥 ∶ − 6√2
√√√√
⎷

− 3√2 −
√

3𝑖 3√1+
√

3𝑖
2 − 3√1+

√
3𝑖

2 + (2 + 2
√

3𝑖)
2
3

(1 +
√

3𝑖)
2
3

, 𝑦 ∶ 1
3√1

2 +
√

3𝑖
2

+ 3√1
2 +

√
3𝑖
2

⎫}
⎬}⎭

[13]: for i, l in enumerate(sol):
lxn = complex(l[x].n()) # complex wandelt sympy Summe (a+i*b) in python␣

↪complex um
lyn = complex(l[y].n())
print(f'{i}. Lsg \t x: {lxn.real:9.6f}{lxn.imag:+9.6f}i\t y: {lyn.real:9.

↪6f}{lyn.imag:+9.6f}i')

0. Lsg x: -0.684040-0.000000i y: 1.879385+0.000000i
1. Lsg x: 0.684040+0.000000i y: 1.879385+0.000000i
2. Lsg x: -1.285575+0.000000i y: -1.532089+0.000000i
3. Lsg x: 1.285575-0.000000i y: -1.532089+0.000000i
4. Lsg x: -1.969616+0.000000i y: -0.347296-0.000000i
5. Lsg x: 1.969616-0.000000i y: -0.347296-0.000000i

Beispiel (Fibonacci Zahlen) Die Fibonacci-Zahlen definiert durch die Rekursion

𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 mit 𝑓0 = 0, 𝑓1 = 1

können auch durch 𝑓𝑛 = 𝑎𝑥𝑛 + 𝑏𝑦𝑛 berechnet werden.

Wir bestimmen die 𝑎, 𝑏, 𝑥, 𝑦 .

[14]: a, b, x, y = symbols("a b x y")
unb = [a, b, x, y]

[15]: def fib(n):
return a*x**n + b*y**n

[16]: # Menge der nichtlinearen Gleichungen
nls = FiniteSet()
for n_ in range(1, 5):

nls |= {Eq(fibonacci(n_), fib(n_))}

# alternativ mit einer Liste
nll = []
for n_ in range(1, 5):

nll += [Eq(fibonacci(n_), fib(n_))]

display(nls)
display(nll) # solve und nonlinsolve kommen mit beiden zurecht
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{1 = 𝑎𝑥 + 𝑏𝑦, 1 = 𝑎𝑥2 + 𝑏𝑦2, 2 = 𝑎𝑥3 + 𝑏𝑦3, 3 = 𝑎𝑥4 + 𝑏𝑦4}
[1 = 𝑎𝑥 + 𝑏𝑦, 1 = 𝑎𝑥2 + 𝑏𝑦2, 2 = 𝑎𝑥3 + 𝑏𝑦3, 3 = 𝑎𝑥4 + 𝑏𝑦4]

[17]: ls_solve = solve(nll) # solve liefert eine Liste mit Dictionaries für die␣
↪Unbekannten

ls_solve

[17]:
[{𝑎 ∶ −

√
5

5 , 𝑏 ∶
√

5
5 , 𝑥 ∶ 1

2 −
√

5
2 , 𝑦 ∶ 1

2 +
√

5
2 } , {𝑎 ∶

√
5

5 , 𝑏 ∶ −
√

5
5 , 𝑥 ∶ 1

2 +
√

5
2 , 𝑦 ∶ 1

2 −
√

5
2 }]

[18]: ls_nls = nonlinsolve(
nls, unb) # nonlinsolve liefert eine Menge mit (geordneten) Tupeln.

#Die Ordnung ist die in der Liste der Variablen
ls_nls

[18]:
{(−

√
5

5 ,
√

5
5 , 1

2 −
√

5
2 , 1

2 +
√

5
2 ) , (

√
5

5 , −
√

5
5 , 1

2 +
√

5
2 , 1

2 −
√

5
2 )}

[19]: lsg = {var_ : erg_ for erg_, var_ in zip(list(ls_nls)[0],unb)}
lsg # das ist der erste Eintrag von ls_solve

[19]:
{𝑎 ∶ −

√
5

5 , 𝑏 ∶
√

5
5 , 𝑥 ∶ 1

2 −
√

5
2 , 𝑦 ∶ 1

2 +
√

5
2 }

[20]: n = symbols('n', integer=True)
fib(n).subs(lsg)

[20]:
−

√
5 (1

2 −
√

5
2 )

𝑛

5 +
√

5 (1
2 +

√
5

2 )
𝑛

5
[21]: for n_ in range(5):

print(fibonacci(n_), (fib(n_).subs(lsg)) )

0 0
1 -sqrt(5)*(1/2 - sqrt(5)/2)/5 + sqrt(5)*(1/2 + sqrt(5)/2)/5
1 -sqrt(5)*(1/2 - sqrt(5)/2)**2/5 + sqrt(5)*(1/2 + sqrt(5)/2)**2/5
2 -sqrt(5)*(1/2 - sqrt(5)/2)**3/5 + sqrt(5)*(1/2 + sqrt(5)/2)**3/5
3 -sqrt(5)*(1/2 - sqrt(5)/2)**4/5 + sqrt(5)*(1/2 + sqrt(5)/2)**4/5

[22]: for n_ in range(10):
if simplify(fibonacci(n_) - fib(n_).subs(lsg)): # 0 ist False

raise ValueError(f"ungleich für n={n_}")

Kein Fehler, passt.

Wir prüfen jetzt die Rekursionsgleichung 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛
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[23]: Eq(fib(n + 2), fib(n + 1) + fib(n)).subs(lsg)

[23]:

−
√

5 (1
2 −

√
5

2 )
𝑛+2

5 +
√

5 (1
2 +

√
5

2 )
𝑛+2

5 = −
√

5 (1
2 −

√
5

2 )
𝑛

5 −
√

5 (1
2 −

√
5

2 )
𝑛+1

5 +
√

5 (1
2 +

√
5

2 )
𝑛

5 +
√

5 (1
2 +

√
5

2 )
𝑛+1

5
[24]: (fib(n + 2) - fib(n + 1) - fib(n)).subs(lsg).expand()

[24]: 0

1.2 Python rechnet komplex

[25]: I**2

[25]: −1
[26]: exp(I * pi / 2)

[26]: 𝑖
[27]: ((2 + I)**3).expand()

[27]: 2 + 11𝑖
[28]: a = x + I * y

a

[28]: 𝑥 + 𝑖𝑦
[29]: (a**2).expand()

[29]: 𝑥2 + 2𝑖𝑥𝑦 − 𝑦2

[30]: re(a**2).expand()

[30]: (re (𝑥))2 − 2 re (𝑥) im (𝑦) − (re (𝑦))2 − 2 re (𝑦) im (𝑥) − (im (𝑥))2 + (im (𝑦))2

[31]: re(a)

[31]: re (𝑥) − im (𝑦)

[32]: im(a)

[32]: re (𝑦) + im (𝑥)

[33]: x, y = symbols('x y', real=True)
z = x + I*y
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[34]: re(z**2).expand()

[34]: 𝑥2 − 𝑦2

[35]: abs(z)

[35]: √𝑥2 + 𝑦2

1.3 Vereinfachen und zusammenfassen
vgl. Lektion 2

[36]: x, y, z, a, b, c = symbols('x y z a b c')

1.3.1 faktorisieren (factor)

[37]: q = x**2 + 2 * x + 1

[38]: h = factor(q)
h

[38]: (𝑥 + 1)2

[39]: q.factor()

[39]: (𝑥 + 1)2

1.3.2 ausmultiplizieren (expand)

[40]: h

[40]: (𝑥 + 1)2

[41]: h.expand()

[41]: 𝑥2 + 2𝑥 + 1
[42]: expand(h)

[42]: 𝑥2 + 2𝑥 + 1

1.3.3 rationale Ausdrücke in gekürzte Standardform bringen

[43]: f = (x**2 - y**2)/(x+y)**2
f

[43]: 𝑥2 − 𝑦2

(𝑥 + 𝑦)2
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[44]: cancel(f)

[44]: 𝑥 − 𝑦
𝑥 + 𝑦

[45]: ratsimp(f)

[45]:
− 2𝑦

𝑥 + 𝑦 + 1

1.3.4 collect und coeff

[46]: g = 0
for j in range(4):

g += (x + j * y + (j * x - y) * exp(y))**j
g

[46]: 𝑥 + 𝑦 + (𝑥 − 𝑦) 𝑒𝑦 + (𝑥 + 2𝑦 + (2𝑥 − 𝑦) 𝑒𝑦)2 + (𝑥 + 3𝑦 + (3𝑥 − 𝑦) 𝑒𝑦)3 + 1

[47]: f = expand(g) # expand als Funktion # f = g.expand() expand als Methode
f

[47]: 27𝑥3𝑒3𝑦 + 27𝑥3𝑒2𝑦 + 9𝑥3𝑒𝑦 + 𝑥3 − 27𝑥2𝑦𝑒3𝑦 + 63𝑥2𝑦𝑒2𝑦 + 51𝑥2𝑦𝑒𝑦 + 9𝑥2𝑦 + 4𝑥2𝑒2𝑦 + 4𝑥2𝑒𝑦 + 𝑥2 +
9𝑥𝑦2𝑒3𝑦 − 51𝑥𝑦2𝑒2𝑦 + 63𝑥𝑦2𝑒𝑦 + 27𝑥𝑦2 − 4𝑥𝑦𝑒2𝑦 + 6𝑥𝑦𝑒𝑦 + 4𝑥𝑦 + 𝑥𝑒𝑦 + 𝑥 − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 − 27𝑦3𝑒𝑦 +
27𝑦3 + 𝑦2𝑒2𝑦 − 4𝑦2𝑒𝑦 + 4𝑦2 − 𝑦𝑒𝑦 + 𝑦 + 1

[48]: collect(f, x) # collect als Funktion

[48]: 𝑥3 (27𝑒3𝑦 + 27𝑒2𝑦 + 9𝑒𝑦 + 1) + 𝑥2 (−27𝑦𝑒3𝑦 + 63𝑦𝑒2𝑦 + 51𝑦𝑒𝑦 + 9𝑦 + 4𝑒2𝑦 + 4𝑒𝑦 + 1) +
𝑥 (9𝑦2𝑒3𝑦 − 51𝑦2𝑒2𝑦 + 63𝑦2𝑒𝑦 + 27𝑦2 − 4𝑦𝑒2𝑦 + 6𝑦𝑒𝑦 + 4𝑦 + 𝑒𝑦 + 1) − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 − 27𝑦3𝑒𝑦 +
27𝑦3 + 𝑦2𝑒2𝑦 − 4𝑦2𝑒𝑦 + 4𝑦2 − 𝑦𝑒𝑦 + 𝑦 + 1

[49]: f.collect(exp(y)) # collect als Methode

[49]: 𝑥3 + 9𝑥2𝑦 + 𝑥2 + 27𝑥𝑦2 + 4𝑥𝑦 + 𝑥 + 27𝑦3 + 4𝑦2 + 𝑦 +
(27𝑥3 − 27𝑥2𝑦 + 9𝑥𝑦2 − 𝑦3) 𝑒3𝑦 + (27𝑥3 + 63𝑥2𝑦 + 4𝑥2 − 51𝑥𝑦2 − 4𝑥𝑦 + 9𝑦3 + 𝑦2) 𝑒2𝑦 +
(9𝑥3 + 51𝑥2𝑦 + 4𝑥2 + 63𝑥𝑦2 + 6𝑥𝑦 + 𝑥 − 27𝑦3 − 4𝑦2 − 𝑦) 𝑒𝑦 + 1

[50]: collect(f, exp(y), exact=True)

[50]: 27𝑥3𝑒3𝑦 + 27𝑥3𝑒2𝑦 + 𝑥3 − 27𝑥2𝑦𝑒3𝑦 + 63𝑥2𝑦𝑒2𝑦 + 9𝑥2𝑦 + 4𝑥2𝑒2𝑦 + 𝑥2 + 9𝑥𝑦2𝑒3𝑦 −
51𝑥𝑦2𝑒2𝑦 + 27𝑥𝑦2 − 4𝑥𝑦𝑒2𝑦 + 4𝑥𝑦 + 𝑥 − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 + 27𝑦3 + 𝑦2𝑒2𝑦 + 4𝑦2 + 𝑦 +
(9𝑥3 + 51𝑥2𝑦 + 4𝑥2 + 63𝑥𝑦2 + 6𝑥𝑦 + 𝑥 − 27𝑦3 − 4𝑦2 − 𝑦) 𝑒𝑦 + 1

[51]: f.collect(x**2, exact=True)

[51]: 27𝑥3𝑒3𝑦 + 27𝑥3𝑒2𝑦 + 9𝑥3𝑒𝑦 + 𝑥3 + 𝑥2 (−27𝑦𝑒3𝑦 + 63𝑦𝑒2𝑦 + 51𝑦𝑒𝑦 + 9𝑦 + 4𝑒2𝑦 + 4𝑒𝑦 + 1) + 9𝑥𝑦2𝑒3𝑦 −
51𝑥𝑦2𝑒2𝑦 + 63𝑥𝑦2𝑒𝑦 + 27𝑥𝑦2 − 4𝑥𝑦𝑒2𝑦 + 6𝑥𝑦𝑒𝑦 + 4𝑥𝑦 + 𝑥𝑒𝑦 + 𝑥 − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 − 27𝑦3𝑒𝑦 + 27𝑦3 +
𝑦2𝑒2𝑦 − 4𝑦2𝑒𝑦 + 4𝑦2 − 𝑦𝑒𝑦 + 𝑦 + 1

9



[52]: collect(f, x).coeff(x**2)

[52]: −27𝑦𝑒3𝑦 + 63𝑦𝑒2𝑦 + 51𝑦𝑒𝑦 + 9𝑦 + 4𝑒2𝑦 + 4𝑒𝑦 + 1
[53]: collect(f, exp(y)).coeff(exp(y))

[53]: 9𝑥3 + 51𝑥2𝑦 + 4𝑥2 + 63𝑥𝑦2 + 6𝑥𝑦 + 𝑥 − 27𝑦3 − 4𝑦2 − 𝑦

Achtung
[54]: g = y + (x + 2 * z) * exp(x)

g.expand()

[54]: 𝑥𝑒𝑥 + 𝑦 + 2𝑧𝑒𝑥

[55]: g.expand().coeff(x, 0)

[55]: 𝑦
ausdruck.coef(x, 0)

gibt die von x unabhängingen Terme zurück. Der Term 2 ∗ 𝑧 ∗ exp(𝑥) wird als von 𝑥 abhängig
interpretiert.

[56]: expx = symbols('expx')
g.replace(exp(x), expx).expand().coeff(x, 0).replace(expx, exp(x))

[56]: 𝑦 + 2𝑧𝑒𝑥

[57]: g.replace(exp(x), expx).expand().coeff(x, 0)

[57]: 2𝑒𝑥𝑝𝑥𝑧 + 𝑦

1.3.5 Kettenbruch

[58]: k = 1+x/(x -2/(x-4/(8-x))) # Kettenbruch (continued fraction)
k

[58]: 𝑥
𝑥 − 2

𝑥− 4
8−𝑥

+ 1

[59]: cancel(k)

[59]: 2𝑥3 − 16𝑥2 + 6𝑥 + 16
𝑥3 − 8𝑥2 + 2𝑥 + 16

[60]: simplify(k)

[60]: 𝑥
𝑥 − 2

𝑥+ 4
𝑥−8

+ 1
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[61]: ratsimp(k)

[61]: 2𝑥 − 16
𝑥3 − 8𝑥2 + 2𝑥 + 16 + 2

1.3.6 Partialbruchzerlegung

[62]: h = (4*x**3+10*x**2+12)/(x**4+3*x**3+3*x**2+x)
h

[62]: 4𝑥3 + 10𝑥2 + 12
𝑥4 + 3𝑥3 + 3𝑥2 + 𝑥

[63]: h = apart(h) # Partialbruchzerlegung (parital fraction decomposition)
h

[63]:
− 8

𝑥 + 1 − 10
(𝑥 + 1)2 − 18

(𝑥 + 1)3 + 12
𝑥

[64]: together(h)

[64]: 2 (−4𝑥 (𝑥 + 1)2 − 5𝑥 (𝑥 + 1) − 9𝑥 + 6 (𝑥 + 1)3)
𝑥 (𝑥 + 1)3

[65]: ratsimp(h)

[65]: 4𝑥3 + 10𝑥2 + 12
𝑥4 + 3𝑥3 + 3𝑥2 + 𝑥

1.3.7 Vereinfachung unter Annahmen (assumptions)

[66]: f = log(y / x) - log(y) + log(x)
f

[66]: log (𝑥) − log (𝑦) + log (𝑦
𝑥)

[67]: simplify(f)

[67]: log (𝑥) − log (𝑦) + log (𝑦
𝑥)

[68]: x, y = symbols('x y', positive=True)
f = log(y / x) - log(y) + log(x)
simplify(f)

[68]: 0
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1.3.8 trigsimp und powsimp

[69]: x, y = symbols('x y')
x.assumptions0, y.assumptions0

[69]: ({'commutative': True}, {'commutative': True})

[70]: f = sin(x)**4 - 2 * sin(x)**2 * cos(x)**2 + cos(x)**4
f

[70]: sin4 (𝑥) − 2 sin2 (𝑥) cos2 (𝑥) + cos4 (𝑥)

[71]: simplify(f)

[71]: cos (4𝑥)
2 + 1

2
[72]: trigsimp(f)

[72]: cos (4𝑥)
2 + 1

2
[73]: expand(cos(x + y)) # funktioniert nicht

[73]: cos (𝑥 + 𝑦)

[74]: expand_trig(cos(x + y))

[74]: − sin (𝑥) sin (𝑦) + cos (𝑥) cos (𝑦)

[75]: expand_trig(sinh(x + y))

[75]: sinh (𝑥) cosh (𝑦) + sinh (𝑦) cosh (𝑥)

[76]: a = symbols('a')

[77]: powsimp(x**a * x**b)

[77]: 𝑥𝑎+𝑏

[78]: trigsimp(x**a * x * sin(x) / cos(x))

[78]: 𝑥𝑥𝑎 tan (𝑥)

[79]: powsimp(x**a * x * sin(x) / cos(x))

[79]: 𝑥𝑎+1 sin (𝑥)
cos (𝑥)

[80]: simplify(x**a * x * sin(x) / cos(x))

[80]:
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𝑥𝑎+1 tan (𝑥)

[81]: powsimp(x**a * y**a) # Uebungen

[81]: 𝑥𝑎𝑦𝑎

[82]: powsimp((x**a)**b)

[82]: (𝑥𝑎)𝑏

1.4 Umformungen (rewrite)

[83]: sin(2 * x).rewrite(tan)

[83]: 2 tan (𝑥)
tan2 (𝑥) + 1

[84]: sin(2 * x).rewrite(cos)

[84]: cos (2𝑥 − 𝜋
2 )

[85]: sin(2 * x).rewrite(exp)

[85]:
−𝑖 (𝑒2𝑖𝑥 − 𝑒−2𝑖𝑥)

2
[86]: tan(x).rewrite(sin)

[86]: 2 sin2 (𝑥)
sin (2𝑥)

1.5 Reihenentwicklung (Taylor)
Für eine glatte Funktion 𝑓 ist

𝑇 𝑓(𝑥; 𝑥0) ∶=
∞

∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛

die Taylorreihe. Sie muss nicht konvergieren!

[87]: # die ersten acht Terme um den Entwicklungspunkt 0
series(exp(x), x, 0, 8)

[87]:
1 + 𝑥 + 𝑥2

2 + 𝑥3

6 + 𝑥4

24 + 𝑥5

120 + 𝑥6

720 + 𝑥7

5040 + 𝑂 (𝑥8)

Falls die Funktion hinreichend oft differenzierbar ist, ist der Taylorrest, das was sympy als 𝑂(𝑥𝑛)
angibt klein.

Eine Funktion 𝑓 ist in 𝒪(𝑥𝑛, 𝑥 → 0), falls

lim sup
𝑥→0

∣𝑓(𝑥)
𝑥𝑛 ∣ < ∞.
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In sympy fehlt das 𝑥 → 0.

[88]: T = 1 + x + O(x**2, (x, 0))
T

[88]: 1 + 𝑥 + 𝑂 (𝑥2)

[89]: (T/x).expand()

[89]: 1
𝑥 + 1 + 𝑂 (𝑥)

[90]: # Taylorentwicklung von ln um x_0 = 1
T2s = {} # dictionary
for k in [1, 2, 3, 10]:

T2s[k] = ln(x).series(x, 1, k+1).removeO()
T2s

[90]:
{1 ∶ 𝑥 − 1, 2 ∶ 𝑥 − (𝑥 − 1)2

2 − 1, 3 ∶ 𝑥 + (𝑥 − 1)3

3 − (𝑥 − 1)2

2 − 1, 10 ∶ 𝑥 − (𝑥 − 1)10

10 + (𝑥 − 1)9

9 − (𝑥 − 1)8

8 + (𝑥 − 1)7

7 − (𝑥 − 1)6

6 + (𝑥 − 1)5

5 − (𝑥 − 1)4

4 + (𝑥 − 1)3

3 − (𝑥 − 1)2

2 − 1}

[91]: fig = plt.figure()
ax = fig.gca()
xn = np.linspace(0.01, 2.6)
for k in T2s:

ax.plot(xn, lambdify(x, T2s[k])(xn), label=f'TaylorPoly Grad {k-1}')

ax.plot(xn, np.log(xn), 'k:', label='ln(x)')
plt.legend(loc=8);

Die Taylorentwicklung kann zu einer Laurententwicklung verallgemeinert werden. Dann kann man

14



auch ∞ als Entwicklungspunkt nehmen, oder Funktionen mit Singularitäten entwickeln (mehr dazu
in Funktiontheorie).

[92]: series(atan(x), x, oo, 5)

[92]: 1
3𝑥3 − 1

𝑥 + 𝜋
2 + 𝑂 ( 1

𝑥5 ; 𝑥 → ∞)

[93]: L = {}
for n in [4, 6, 10]:

L[n] = series(atan(x), x, oo, n + 1).removeO()
L

[93]:
{4 ∶ 𝜋

2 − 1
𝑥 + 1

3𝑥3 , 6 ∶ 𝜋
2 − 1

𝑥 + 1
3𝑥3 − 1

5𝑥5 , 10 ∶ 𝜋
2 − 1

𝑥 + 1
3𝑥3 − 1

5𝑥5 + 1
7𝑥7 − 1

9𝑥9 }

[94]: xn = np.linspace(1, 10, 100)
fig, ax = plt.subplots()
for n in L:

ax.plot(xn, lambdify(x, L[n])(xn), label=f'"Grad" {n}')

ax.plot(xn, np.arctan(xn), label='arctan(x)')
plt.legend(loc=4);

Beispiel Rationale Approximation Wir suchen eine rationale Approximation an die Wurzel-
funktion, so, dass jeweils der Anfang der Taylorreihe übereinstimmt.

[95]: a = symbols('a:4')
X = symbols('X')
a

[95]:
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(𝑎0, 𝑎1, 𝑎2, 𝑎3)

[96]: r = (a[0] + a[2] * X) / (1 + a[1] * X + a[3] * X**2)
tr = r.series(X, 0, 4).removeO()
tr

[96]: 𝑋3 (𝑎0 (−𝑎3
1 + 2𝑎1𝑎3) + 𝑎2 (𝑎2

1 − 𝑎3)) + 𝑋2 (𝑎0 (𝑎2
1 − 𝑎3) − 𝑎1𝑎2) + 𝑋 (−𝑎0𝑎1 + 𝑎2) + 𝑎0

[97]: f = (1 + X)**Rational(1, 2)
tf = f.series(X, 0, 4).removeO()
tf

[97]: 𝑋3

16 − 𝑋2

8 + 𝑋
2 + 1

[98]: # Gesucht sind a0, a1, a2 und a3 so, dass tf und tr übereinstimmen
sol = solve(Eq(tr, tf), a)
sol

[98]:
{𝑎0 ∶ 1, 𝑎1 ∶ 1

3 , 𝑎2 ∶ 5
6 , 𝑎3 ∶ − 1

24}

[99]: plot(f, r.subs(sol), tf, (X, -1, 3), legend=True);

1.6 Was ist eine series?
Wenn 𝑓 eine Taylorreihe in dem Punkt hat, dann der Anfang der Taylorreihe.

[100]: cos(x).series(x, 1, 9)

[100]:
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cos (1) − (𝑥 − 1) sin (1) − (𝑥 − 1)2 cos (1)
2 + (𝑥 − 1)3 sin (1)

6 + (𝑥 − 1)4 cos (1)
24 − (𝑥 − 1)5 sin (1)

120 −
(𝑥 − 1)6 cos (1)

720 + (𝑥 − 1)7 sin (1)
5040 + (𝑥 − 1)8 cos (1)

40320 + 𝑂 ((𝑥 − 1)9 ; 𝑥 → 1)

Wenn f eine Laurentreihe mit endlichem Nebenteil in ∞ hat, dann der Anfang des Haupteils. (mehr
dazu in Funktionenentheorie)

Eine unendliche Reihe der Form
∞

∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛 =
∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 +
∞

∑
𝑛=1

𝑎−𝑛(𝑧 − 𝑧0)−𝑛

heißt Laurentreihe mit Entwicklungspunkt 𝑧0, und die Reihen

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 bzw.
∞

∑
𝑛=1

𝑎−𝑛(𝑧 − 𝑧0)−𝑛

heißen der Nebenteil bzw. der Hauptteil der Laurentreihe. Eine Laurentreihe konvergiert im Punkt
𝑧 ∈ ℂ, wenn sowohl Haupt- als auch Nebenteil konvergieren.

[101]: g = (x**2 + 2 * x + 1)**2 / (x**2 + 2 * x - 1)
g.series(x, oo)

[101]:
−48

𝑥5 + 20
𝑥4 − 8

𝑥3 + 4
𝑥2 + 3 + 2𝑥 + 𝑥2 + 𝑂 ( 1

𝑥6 ; 𝑥 → ∞)

Sonst ist ‘series’ kein mathematisch sinnvoller Begriff

[102]: h = exp(x) * g
h

[102]: (𝑥2 + 2𝑥 + 1)2 𝑒𝑥

𝑥2 + 2𝑥 − 1
[103]: exp(x).series(x, oo)

[103]: 𝑒𝑥

[104]: h.series(x, oo)

[104]:
−48𝑒𝑥

𝑥5 + 20𝑒𝑥

𝑥4 − 8𝑒𝑥

𝑥3 + 4𝑒𝑥

𝑥2 + 3𝑒𝑥 + 2𝑥𝑒𝑥 + 𝑥2𝑒𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)

[105]: j = exp(x) * exp(1 / x)
j

[105]: 𝑒 1
𝑥 𝑒𝑥

[106]: j.series(x, oo)

[106]: 𝑒𝑥

120𝑥5 + 𝑒𝑥

24𝑥4 + 𝑒𝑥

6𝑥3 + 𝑒𝑥

2𝑥2 + 𝑒𝑥

𝑥 + 𝑒𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)
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[107]: j1 = exp(x + 1 / x)
j1

[107]: 𝑒𝑥+ 1
𝑥

[108]: j1.series(x, oo)

[108]: 𝑒𝑥+ 1
𝑥

[109]: j*g

[109]: (𝑥2 + 2𝑥 + 1)2 𝑒 1
𝑥 𝑒𝑥

𝑥2 + 2𝑥 − 1
[110]: (j*g).series(x, oo)

[110]:
−17531𝑒𝑥

560𝑥5 + 10183𝑒𝑥

720𝑥4 − 409𝑒𝑥

120𝑥3 + 47𝑒𝑥

8𝑥2 + 25𝑒𝑥

6𝑥 + 11𝑒𝑥

2 + 3𝑥𝑒𝑥 + 𝑥2𝑒𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)

[111]: (j1*g).series(x, oo)

[111]:
−48𝑒𝑥+ 1

𝑥

𝑥5 + 20𝑒𝑥+ 1
𝑥

𝑥4 − 8𝑒𝑥+ 1
𝑥

𝑥3 + 4𝑒𝑥+ 1
𝑥

𝑥2 + 3𝑒𝑥+ 1
𝑥 + 2𝑥𝑒𝑥+ 1

𝑥 + 𝑥2𝑒𝑥+ 1
𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)
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