lektion9

December 11, 2025

Inhalt

1 Gleichungssysteme

1.1 Lineare Systeme

1.2 Nichtlineare Systeme

2 Python rechnet komplex

3 Vereinfachen und zusammenfassen

3.1 faktorisieren (factor)

3.2 ausmultiplizieren (expand)

3.3 rationale Ausdriicke in gekiirzte Standardform bringen
3.4 collect und coeff

3.5 Kettenbruch

3.6 Partialbruchzerlegung

3.7 Vereinfachung unter Annahmen (assumptions)
3.8 trigsimp und powsimp

4 Umformungen (rewrite)

5 Reihenentwicklung (Taylor)

6 Was ist eine series?

1 Lektion 9

1.1 Gleichungssysteme
Zu

Lo
F:R*—=R™ : —
T

n—1
~———

=T

suche z, so, dass F(z) = 0.

[1]: | #Zmatplotlib notebook
Jmatplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [4, 3]
from sympy import *
a, b = symbols('a b')
X = symbols('x:2")
init_printing()
x # x ist ein Tupel mit zwei zwei Symbolen

[1]:

(2o, 1)

1.1.1 Lineare Systeme

Das machen wir nichste Woche ausfiihrlicher, sobald wir Matrizen eingefiihrt haben.

[2]: 1gs = (Eq(x[0]+x[1], a), Eq(2*x[0]-b*x[1], 3))
1gs

[2] : (170 + T = a, _bZEl + 2170 = 3)

[3]: sol = linsolve(lgs, x)
sol

[3]={<ab+3 2a—3>}

b+2" b+2

[4]: sol = solve(lgs, x)
sol

[41:{ ~ab+3 '2a—3}
T T e

1.1.2 Nichtlineare Systeme

[5]: nls = [Eq(x[0]**2+x[1]**2, 1), Eq(x[0], x[1])]
nls

[5]:

[25 + 27 =1, 29 = 2]

[6]: lsg = nonlinsolve(nls, x)
1sg

[6]: o) o) /2 2
52)l

[7]: 1lsg = solve(nls, x,)
1sg

[7]:

[8]:
[8]:

[9]1:

[10]:

[x%_'_x% =1, z :1'1]

xn = np.linspace(-2 , 2, 100)

X = np.meshgrid(xn, xn) # X <st Tupel aus X0, X1

fig, ax = plt.subplots()

ax.contour (¥*X, lambdify(x, nls[0].lhs-nls[0].rhs) (*X), [0], colors='blue')
ax.contour (*X, lambdify(x, nls[1].lhs-nls[1].rhs) (*X), [0], colors='green')
ax.axis('equal');

2.0
1.5+
1.0~
0.5 A
0.0 4
—0.5 -
—1.04
—1.5 -

_2.D 1 T T

alternativ

xn = np.linspace(-2 , 2, 100)

X, Y = np.meshgrid(xn, xn)

fig, ax = plt.subplots()

ax.contour(X, Y, lambdify((x[0], x[1]), nls[0].lhs-nls[0].rhs) (X, Y), [O],.
<colors='blue')

ax.contour(X, Y, lambdify((x[0], x[1]), nls[1].lhs-nls[1].rhs) (X, Y), [O],.
~colors='green')

ax.axis('equal');

2.0
1.5+
1.0~
0.5 A
0.0 4
—0.5 -
—1.04
—1.5 -

_2.D 1 T T T

[11]: |x, y = symbols('x y') # jetzt ist = ein einziges Symbol

f = xxx2 + yk*x2 + 3 * xk*k2 * y - y*k*3

g = X**x2 + yk*2

xn = np.linspace(-3, 3, 100)

X, Y = np.meshgrid(xn, xn)

fig, ax = plt.subplots()

ax.contour(X, Y, lambdify((x, y), £)(X, Y), [0], colors='blue')

ax.contour(X, Y, lambdify((x, y), g) (X, Y), [4], colors='red') # g(z,y) = 4,
~Hoehenlinie

ax.axis('equal');

[12]:

[12]:

[13]:

[14]:

[15]:

[16]:

sol = solve([f, g-4]1)
1lsg = soll[0]
1sg

o

. , X 2
6 —3/5—“3’%/2“@—%;ﬁ’+(2+2ﬁz‘)3 1 s[1 V/3i
«T:—\/E s Y '+ 5"‘7
(1+v/3i) e

for i, 1 in enumerate(sol):

1xn = complex(1[x].n()) # complex wandelt sympy Summe (a+i*b) in pythomn,

—complex um
lyn = complex(1[y]l.n())

print(f'{i}. Lsg \t x: {lxn.real:9.6f}{1xn.

~6f}{1lyn.imag:+9.6£f}i")

0. Lsg x: -0.684040-0.000000i y: 1.879385+0.
1. Lsg x: 0.684040+0.0000001 y: 1.879385+0.
2. Lsg x: -1.285575+0.000000i y: -1.532089+0.
3. Lsg x: 1.285575-0.000000i y: -1.532089+0.
4. Lsg x: -1.969616+0.0000001 y: -0.347296-0.
5. Lsg x: 1.969616-0.000000i y: -0.347296-0.

imag:+9.6£f}i\t y: {lyn.real:9.

0000001
0000001
0000001
0000001
0000001
0000001

Beispiel (Fibonacci Zahlen) Die Fibonacci-Zahlen definiert durch die Rekursion

Jnio = fpy1 + [mit fo =0, f; =1

koénnen auch durch f,, = az™ + by™ berechnet werden.

Wir bestimmen die a,b,z,y .

a, b, x, y = symbols("a b x y")
unb = [a, b, x, y]

def fib(n):
return a*x**n + bkxy**n

Menge der nichtlinearen Gleichungen
nls = FiniteSet()
for n_ in range(l, 5):

nls |= {Eq(fibonacci(n_), fib(n_))}

alternativ mit einer Liste
nll = []
for n_ in range(l, 5):
nll += [Eq(fibonacci(n_), fib(n_))]

display(nls)

display(nll) # solve und nonlinsolve kommen mit beiden zurecht

{1=ax+by,1 =az?+by? 2 = ax®+ by?,3 = az* + by*}
[1=ax+by, 1=az?+by? 2=az®+by®, 3=ax?+by!

[17]: 1s_solve = solve(nll) # solwve liefert eine Liste mit Dictionaries fiur diey

~Unbekannten
1s_solve
171 :
e VB VB 1 VB 1.4B VB VB 1. VB 1 4B
a:_iab:iaxzf_iay:f—kivaziab:_i)x:i—ki?y:*_i
5 5 2 2 2 2 5 5 2 2 2

[18]: 1s_nls = nonlinsolve(
nls, unb) # nonlinsolve liefert eine Menge mit (geordneten) Tupeln.
#Die Ordnung ist die in der Liste der Variablen

1s_nls
(VB VB 1 VB 1 VB (VB VB 1 VB 1 B
5’ 572 272 2 ’ 5’ 572 272 2

[19]: 1sg = {var_ : erg_ for erg_, var_ in zip(list(ls_nls) [0],unb)?}
1sg # das ist der erste Eintrag wvon ls_solve

7,[)' \/gay;l_k\/g}

[19]:
{a,:—\/5 'E,x: —
5 2 2 2

[20]: n = symbols('n', integer=True)
fib(n) .subs(1lsg)
[20] : n n
=))
))

[21]: for n_ in range(5):
print(fibonacci(n_), (fib(n_).subs(lsg)))

00

1 -sqrt(6)*(1/2
1 -sqrt(5)*(1/2
2 -sqrt(5)*(1/2
3 -sqrt(5)*(1/2

sqrt(5)/2)/5 + sqrt(5)*(1/2 + sqrt(5)/2)/5

sqrt(5)/2)*x2/5 + sqrt(5)*(1/2 + sqrt(5)/2)**2/5
sqrt(5)/2)*x3/5 + sqrt(5)*(1/2 + sqrt(5)/2)*x3/5
sqrt (5)/2)**4/5 + sqrt(5)*(1/2 + sqrt(5)/2)**4/5

[22]: for n_ in range(10):
if simplify(fibonacci(n_) - fib(n_).subs(lsg)): # 0 ist False
raise ValueError(f"ungleich fir n={n_}")

Kein Fehler, passt.
Wir priifen jetzt die Rekursionsgleichung f, ., = f,,.1 + f,

[23]:

[23]:

[24]:

[24] :

[25]:

[25]:

[26] :

[26]:

[27]:

[27]:

[28]:

[28]:

[29]:

[29]:

[30]:

[30]:

[31]:

[31]:

[32]:

[32]:

[33]:

Eq(fib(n + 2), fib(n + 1) + fib(n)) .subs(lsg)

n+2 n+2 n n+1 n
GU—)" R VA VG- V)
_ + —_ _
5 > 5 5 S
Vil %)
)

(fib(n + 2) - fib(n + 1) - fib(n)).subs(lsg) .expand()
0

1.2 Python rechnet komplex

I*xx2

—1

exp(I * pi / 2)

i

((2 + I)**3) .expand()
2+ 11
a=x+1=x*y

a
T + 1y

(a**2) .expand ()
2% 4 2izy — >
re(a**2) .expand ()

(re (2))” — 2re (z) im (y) — (re (y))* — 2re (y) im (z) — (im (x))* + (im (y))*

re(a)

re (x) — im (y)

im(a)

re (y) + im ()

X, y = symbols('x y', real=True)
z

=X+I*y

[34]:

[34]:

[35]:

[35]:

[36]:

[37]:

[38]:

[38]:

[39]:

[39]:

[40]:

[40] :

[41]:

[41] :

[42] :

[42] :

[43]:

[43] :

re(z**2) .expand ()

22 — o2

abs(z)

Va2 + 2

1.3 Vereinfachen und zusammenfassen
vgl. Lektion 2

X, y, Z, a, b, ¢ = symbols('x y z a b c')

1.3.1 faktorisieren (factor)

q = x*¥*2 + 2 x x + 1

h
h

factor(q)

(z+1)°

q.factor()
(x+1)

1.3.2 ausmultiplizieren (expand)

h

(z+1)*

h.expand ()

2 4+2x+1

expand (h)
22+ 22+ 1

1.3.3 rationale Ausdriicke in gekiirzte Standardform bringen

f = (xx*2 - y*x*x2)/(x+y)**2
f

2?2 — 2

(x+y)

[44] :

[44] :

[45] :

[45] :

[46] :

[46] :

[47]:

[47] :

[48] :

[48] :

[49] :

[49] :

[50]:

[50]:

[51]:

[51]:

cancel (f)

r—y
r+y

ratsimp(f)

2y
r+y

+1

1.3.4 collect und coeff

g=0
for j in range(4):

g+=(x+3j*xy+ (*x-y)* exp(y))s*j
g

syt (@—y e+ (z+2y+ 2e—y)e¥)’ + (x+3y+ Bz —y)e?)’ +1

f = expand(g) # ezpand als Funktion # f = g.ezpand() expand als Methode
f

272363V + 2723e?Y + 9x3e¥ + 23 — 272%yeV + 632%ye?Y + 51la2yeY + 9x%y + 4a2e?Y + 42%e¥ + 2% +
9zy%e3Y — 5lzy?e?? + 63xy2eY + 2Txy? — dwye?? + 6xyeY + dwy + xe¥ + x —y3edV 4+ 9yPe? — 27y3e¥ +
273 + y?e? — dy?e¥ + 4y? —ye¥ +y + 1

collect(f, x) # collect als Funktion
23 (273 +27e?Y +9e¥ +1) + 2? (—2Tye + 63ye + 5lye¥ + 9y + 4e®¥ +4e¥ +1) +

z (9y%e — 5ly?e + 63y%e¥ + 27y — dye® + 6ye? + 4y +e¥ + 1) — y2e + 9y3e?¥ — 27yPe¥ +
273 + y?e? — dy?e + 4y? —ye¥ +y + 1

f.collect(exp(y)) # collect als Methode
2 4+ 9%y + 22 4+ 2wy 4+ 4wy + o 4+ 2Ty + 42+ oy +

(2723 — 2722y + 9zy? —y3) ¥ + (2723 +632%y + 422 —5lay? —dwy + 9y +y?) e? +
(923 + 512y + 42? + 63zy® + 6oy + x — 27Ty —4y® —y) eV + 1

collect(f, exp(y), exact=True)
27x3e3Y + 2723e?Y + 23 — 272%yed” + 632%ye® + 922y + 4z + 22 + 9ayledV —

Slzy?e?¥ + 27xy? — daye®™ + 4oy + = — y3e3 + 9y3e?Y + 27y3 + e + 42 + y +
(923 + 512y + 42? + 63zy® + 6zy + x — 27Ty —4y® —y) eV + 1

f.collect (x**2, exact=True)
27x3e3 +27x3e + 923e¥ + 2 + 22 (—2Tye3Y + 63ye + 5lye? + 9y + 4e%¥ + 4e¥ + 1) + 9zye —

51zy?e?y + 63xy2e? + 27xy? — dxye® + 6zyeY + 4oy + xe¥ + x — y3e3Y + 9y3e?¥ — 2Ty3eY + 2793 +
y?e? —dy?eV + 4y —yeV +y +1

[652]: collect(f, x).coeff (x**2)

52]:
[52) —27ye3Y + 63ye?¥ + 5lyeY + 9y + 4e?Y + 4e¥ + 1

[53]: collect(f, exp(y)).coeff(exp(y))

53]:
15315 g + 512y + 422 + 63zy* + 62y + v — 27y> — 4y* —y

Achtung
[64]: g =y + (x + 2 * z) * exp(x)
g.expand ()

4]:
[54] re’ +y+ 2ze”

[55]: g.expand() .coeff(x, 0)

[55]:

ausdruck.coef (x, 0)

gibt die von x unabhéngingen Terme zuriick. Der Term 2 % z % exp(z) wird als von x abhingig
interpretiert.

[66]: expx = symbols('expx')
g.replace(exp(x), expx).expand().coeff(x, 0).replace(expx, exp(x))

[56]: y+ 22"

[57]: g.replace(exp(x), expx).expand().coeff(x, 0)

[57]: 2exprz + Yy

1.3.5 Kettenbruch

[68]: k = 1+x/(x -2/(x-4/(8-x))) # Kettenbruch (continued fraction)
k

58] :
[58] LQ+1
T — 1
:177871}

[59]: cancel (k)

(591 928 — 1622 + 62 + 16
3 — 8x2 + 2z + 16

[60]: simplify(k)

60] : x
[]724-1

x J—
s

10

[61]: ratsimp(k)

[61]: 2 — 16

2
3173’—891:2+2:r—1—16jL

1.3.6 Partialbruchzerlegung

[62]: h = (4*xx**x3+10%x*x*2+12) / (xk*4+3*xx**x3+3%x*k*2+x%)
h

(6215 4% 41022 412
x4+ 323 + 322 + 2

[63]: h = apart(h) # Partialbruchzerlegung (parital fraction decomposition)
h

[63]: 8 10 18 12

z+1 (z+1)° (417 @

[64]: together(h)

O g (e et 1)’ e (e + 1)~ 92 462+ 1))

a;(a;+1)3

[65]: ratsimp(h)

[651+ 428 11022 4 12
xt + 323 + 322+

1.3.7 Vereinfachung unter Annahmen (assumptions)

[66]: f = log(y / x) - log(y) + log(x)
f

(e6] :

log () — log (y) + log (%)

[67]: simplify(f)

[67]:

log () —log (y) + log (%)

[68]: x, y = symbols('x y', positive=True)
f = log(y / x) - log(y) + log(x)
simplify (f)

[68]: 0

11

[69]:

[69]:

[70]:

[70]:

[71]:

[71]:

[72]:

[72]:

[73]:

[73]:

[74]:

[74] :

[75]:

[75]:

[76]:

[77]:

[77]:

[78]:

[78]:

[79]:

[79]:

[80]:

[80]:

1.3.8 trigsimp und powsimp

X, y = symbols('x y')
x.assumptionsO, y.assumptionsO

({'commutative': Truel}, {'commutative': Truel})

f = sin(x)**4 - 2 *x sin(x)**2 * cos(x)**2 + cos(x)**4
f

sin® () — 2sin? () cos? (z) + cos? ()

simplify (£)

cos(4z) 1
2 2

trigsimp(f)

cos(4w) 1
2

expand(cos(x + y)) # funktioniert nicht

cos (z + y)

expand_trig(cos(x + y))

—sin () sin (y) + cos (x) cos (y)
expand_trig(sinh(x + y))
sinh (x) cosh (y) + sinh (y) cosh (z)
a = symbols('a')
powsimp(x**a * x**b)

xa+b

trigsimp(x**a * x * sin(x) / cos(x))
xx®tan (x)

powsimp(x**a * x * sin(x) / cos(x))

"L gin ()

cos (z)

simplify(x**a * x * sin(x) / cos(x))

12

%" tan ()
[81]: powsimp(x**a * y**a) # Uebungen

[81]: iy

[82] : powsimp((x**a)**b)

[82]:

()
1.4 Umformungen (rewrite)
[83]: sin(2 * x).rewrite(tan)

(831 2tan (x)

tan® (z) + 1

[84]: sin(2 * x).rewrite(cos)

[84]: cos (236 — g)

[85]: sin(2 * x).rewrite(exp)
[851: (ezm — ¢ 2i7)

B 2

[86]: tan(x).rewrite(sin)

[86]: 2 sin? (x)

sin (2z)
1.5 Reihenentwicklung (Taylor)

Fiir eine glatte Funktion f ist
o~ f () n
Tf(x;2g) == Z ol 0 (x — o)
n=0 :

die Taylorreihe. Sie muss nicht konvergieren!

[87]: # die ersten acht Terme um den Entwicklungspunkt O
series(exp(x), x, 0, 8)

[87]: - R 25 26 27
1 T T T S R
Trt T T T 190 T 720 T 5040

Falls die Funktion hinreichend oft differenzierbar ist, ist der Taylorrest, das was sympy als O(z™)
angibt klein.

+ O (29)

Eine Funktion f ist in O(z"™,x — 0), falls

lim sup
z—0

f(z)

<o

13

[88]:

[88]

[89]:

[89] :

[90]:

[90] :

[91]:

In sympy fehlt das z — 0.

T=1+x + 0(xx*x2, (x, 0))
T
“14z+0(2?)

(T/x) .expand ()

1
—+14+0(z)
x

Taylorentwicklung von Iln um z_0 = 1
T2s = {} # dictionary
for k in [1, 2, 3, 10]:
T2s[k] = 1In(x).series(x, 1, k+1).remove0()
T2s

(z—1)°
3

2
—1
{1::b——1,2::r——ttf2)—-L 3:x+

fig = plt.figure()
ax = fig.gca()
xn = np.linspace(0.01, 2.6)
for k in T2s:
ax.plot(xn, lambdify(x, T2s[k]) (xn), label=f'Tayl

ax.plot(xn, np.log(xn), 'k:', label='ln(x)')
plt.legend(loc=8);

orPoly Grad {k-1}')

2 p
11 e
D -
_1 —
_2 —
—— TaylorPoly Grad 0
—3 —— TaylorPoly Grad 1
_4 - —— TaylorPoly Grad 2
—— TaylorPoly Grad 9
=1 e In(x)
T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Die Taylorentwicklung kann zu einer Laurententwicklung verallgemeinert werden. Dann kann man

14

auch oo als Entwicklungspunkt nehmen, oder Funktionen mit Singularitéten entwickeln (mehr dazu
in Funktiontheorie).

[92]: series(atan(x), x, oo, 5)

— =+ =40
33 x-+ 2-+

[92]1: 1 1 (1

[93]: L = {}
for n in [4, 6, 10]:
L[n] = series(atan(x), x, oo, n + 1).remove0()
L

P — =+ —, 62 10: - ——4—— =+

[931:{47r 11 T 1 1 1 T 1 1 1 1 1}
2 x 323 2 x 3x3 5zd’ 2 x 3x3 bxd T 929

[94]: xn = np.linspace(l, 10, 100)
fig, ax = plt.subplots()
for n in L:
ax.plot(xn, lambdify(x, L[n]) (xn), label=f'"Grad" {n}')

ax.plot(xn, np.arctan(xn), label='arctan(x)')
plt.legend(loc=4) ;

1.4 4
1.2 A
107 — "Grad" 4
"Grad" &
0.8 - —— "Grad" 10
—— arctan(x)
T T T T T
2 4 6 a8 10

Beispiel Rationale Approximation Wir suchen eine rationale Approximation an die Wurzel-
funktion, so, dass jeweils der Anfang der Taylorreihe tibereinstimmt.

[95]: a = symbols('a:4")
X = symbols('X')
a

[95]:

15

(a0= Qayp, Qg a3)

[96]: |r = (a[0] + a[2] * X) / (1 + a[1] * X + a[3] * Xxx2)
tr = r.series(X, 0, 4).remove0()
tr

[96] :
)(S(ao(——a?4—2a1a3)%—ag(a%——a3))4—)(2(a0(a%——a3)——a1a2)4—}((——a0a14—a2)4—a0

[97]: £ = (1 + X)**Rational(l, 2)
tf = f.series(X, 0, 4).remove0()
tf

[97] : X3 X2 X

[98]: # Gesucht sind a0, al, a2 und a3 so, dass tf und tr ubereinstimmen
sol = solve(Eq(tr, tf), a)
sol

[98]: 1 5 1
{aoz]., alzg, GQ:E, ag:_ﬂ}

[99]: plot(f, r.subs(sol), tf, (X, -1, 3), legend=True);

|
— sqri(X + 1)

— (5%X[6 + 1)/(-X**2/24 + X/3 + 1)
— X#F3f16 - X208 + Xf2 + 1

2.0 1

1.5+

fix)

1.6 Was ist eine series?
Wenn f eine Taylorreihe in dem Punkt hat, dann der Anfang der Taylorreihe.
[100]: cos(x) .series(x, 1, 9)

[100] :

16

(z—1)%cos(1) (z—1)°sin(1) (z—1)*cos(1) (z—1)"sin(1)

cos(l) — (z—1)sin(1) — 5 + c + 51 - 50 —
(x — 1)6 cos(l) (z— 1)7 sin(1) (z— 1)8 cos (1) 9
720 t s T asm TO@-De—1)

Wenn f eine Laurentreihe mit endlichem Nebenteil in co hat, dann der Anfang des Haupteils. (mehr
dazu in Funktionenentheorie)

Eine unendliche Reihe der Form

oo

Z n(z—29)" Za (z —2p) —i—Zan —25)""

n=—0oo

heilt Laurentreihe mit Entwicklungspunkt z,, und die Reihen

—-n
E a, (z — zy)"™ bzw. E a_,(z—zy)

heilen der Nebenteil bzw. der Hauptteil der Laurentreihe. Eine Laurentreihe konvergiert im Punkt
z € C, wenn sowohl Haupt- als auch Nebenteil konvergieren.

[101]: g = (x**2 + 2 * x + 1)**2 / (x**2 + 2 * x - 1)
g.series(x, 00)

[101]: 48 20 8 4 1
e X xT

Sonst ist ‘series’ kein mathematisch sinnvoller Begriff

[102]: h = exp(x) * g
h
1021 :
1102] (;U2+2:L‘+1)26w
x2+2r—1

[103]: exp(x).series(x, 00)

[103]:

ex

[104]: h.series(x, 00)

[104]: 48e™ 20e® 8e” | 4 ’
- (; %—i+i+3e + 2xe® +x26x+0(6 x—>oo>
x x
[1056]: j = exp(x) * exp(l / x)
]
[105]:6%63B

[106]: j.series(x, o00)

[106]: e P e® e® e o R
—_— —— —_— —z—
200 Vo T o T T < » & OO)

17

[107]:

[107]:

[108] :

[108]:

[109]:

[109]:

[110]:

[110]:

[111]:

[111]:

J
J

e

jl.series(x, o0o)

e

J

(x24—2x—%1)2e%em

J,‘+;

T+

1 =exp(x + 1/ %)

1

1

1
x

*g

22422 —1

(j*g) .series(x, o0o0)

17531e”

10183e*

409¢*

47e”

560>

7200t 12023

(j1*g) .series(x, 00)

4867+ %

206+ %

+ 82

46I+;

xrd

+

X

4

xr2

+ 3ze® + 22 + O

_‘_361‘4*% +2flf€x+% +$26x+% +O (6

18

e

€T

26

;x-—}oo)

	Lektion 9
	Gleichungssysteme
	Lineare Systeme
	Nichtlineare Systeme

	Python rechnet komplex
	Vereinfachen und zusammenfassen
	faktorisieren (factor)
	ausmultiplizieren (expand)
	rationale Ausdrücke in gekürzte Standardform bringen
	collect und coeff
	Kettenbruch
	Partialbruchzerlegung
	Vereinfachung unter Annahmen (assumptions)
	trigsimp und powsimp

	Umformungen (rewrite)
	Reihenentwicklung (Taylor)
	Was ist eine series?

