
lektion9

December 11, 2025

Inhalt

1 Gleichungssysteme

1.1 Lineare Systeme

1.2 Nichtlineare Systeme

2 Python rechnet komplex

3 Vereinfachen und zusammenfassen

3.1 faktorisieren (factor)

3.2 ausmultiplizieren (expand)

3.3 rationale Ausdrücke in gekürzte Standardform bringen

3.4 collect und coeff

3.5 Kettenbruch

3.6 Partialbruchzerlegung

3.7 Vereinfachung unter Annahmen (assumptions)

3.8 trigsimp und powsimp

4 Umformungen (rewrite)

5 Reihenentwicklung (Taylor)

6 Was ist eine series?

1 Lektion 9
1.1 Gleichungssysteme
Zu

𝐹 ∶ ℝ𝑛 → ℝ𝑚 ⎡⎢
⎣

𝑥0
⋮

𝑥𝑛−1

⎤⎥
⎦⏟

=𝑥

↦ ⎡⎢
⎣

𝐹0(𝑥0, … 𝑥𝑛−1)
⋮

𝐹𝑚−1(𝑥0, … , 𝑥𝑛−1)
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐹(𝑥)

suche 𝑥, so, dass 𝐹(𝑥) = 0.

1

[1]: #%matplotlib notebook
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [4, 3]
from sympy import *
a, b = symbols('a b')
x = symbols('x:2')
init_printing()
x # x ist ein Tupel mit zwei zwei Symbolen

[1]: (𝑥0, 𝑥1)

1.1.1 Lineare Systeme

Das machen wir nächste Woche ausführlicher, sobald wir Matrizen eingeführt haben.

[2]: lgs = (Eq(x[0]+x[1], a), Eq(2*x[0]-b*x[1], 3))
lgs

[2]: (𝑥0 + 𝑥1 = 𝑎, −𝑏𝑥1 + 2𝑥0 = 3)

[3]: sol = linsolve(lgs, x)
sol

[3]:
{(𝑎𝑏 + 3

𝑏 + 2 , 2𝑎 − 3
𝑏 + 2)}

[4]: sol = solve(lgs, x)
sol

[4]:
{𝑥0 ∶ 𝑎𝑏 + 3

𝑏 + 2 , 𝑥1 ∶ 2𝑎 − 3
𝑏 + 2 }

1.1.2 Nichtlineare Systeme

[5]: nls = [Eq(x[0]**2+x[1]**2, 1), Eq(x[0], x[1])]
nls

[5]: [𝑥2
0 + 𝑥2

1 = 1, 𝑥0 = 𝑥1]

[6]: lsg = nonlinsolve(nls, x)
lsg

[6]:
{(−

√
2

2 , −
√

2
2) , (

√
2

2 ,
√

2
2)}

[7]: lsg = solve(nls, x,)
lsg

2

[7]:
[(−

√
2

2 , −
√

2
2) , (

√
2

2 ,
√

2
2)]

[8]: nls

[8]: [𝑥2
0 + 𝑥2

1 = 1, 𝑥0 = 𝑥1]

[9]: xn = np.linspace(-2 , 2, 100)
X = np.meshgrid(xn, xn) # X ist Tupel aus X0, X1
fig, ax = plt.subplots()
ax.contour(*X, lambdify(x, nls[0].lhs-nls[0].rhs)(*X), [0], colors='blue')
ax.contour(*X, lambdify(x, nls[1].lhs-nls[1].rhs)(*X), [0], colors='green')
ax.axis('equal');

[10]: # alternativ
xn = np.linspace(-2 , 2, 100)
X, Y = np.meshgrid(xn, xn)
fig, ax = plt.subplots()
ax.contour(X, Y, lambdify((x[0], x[1]), nls[0].lhs-nls[0].rhs)(X, Y), [0],␣

↪colors='blue')
ax.contour(X, Y, lambdify((x[0], x[1]), nls[1].lhs-nls[1].rhs)(X, Y), [0],␣

↪colors='green')
ax.axis('equal');

3

[11]: x, y = symbols('x y') # jetzt ist x ein einziges Symbol
f = x**2 + y**2 + 3 * x**2 * y - y**3
g = x**2 + y**2
xn = np.linspace(-3, 3, 100)
X, Y = np.meshgrid(xn, xn)
fig, ax = plt.subplots()
ax.contour(X, Y, lambdify((x, y), f)(X, Y), [0], colors='blue')
ax.contour(X, Y, lambdify((x, y), g)(X, Y), [4], colors='red') # g(x,y) = 4␣

↪Hoehenlinie
ax.axis('equal');

4

[12]: sol = solve([f, g-4])
lsg = sol[0]
lsg

[12]: ⎧{
⎨{⎩

𝑥 ∶ − 6√2
√√√√
⎷

− 3√2 −
√

3𝑖 3√1+
√

3𝑖
2 − 3√1+

√
3𝑖

2 + (2 + 2
√

3𝑖)
2
3

(1 +
√

3𝑖)
2
3

, 𝑦 ∶ 1
3√1

2 +
√

3𝑖
2

+ 3√1
2 +

√
3𝑖
2

⎫}
⎬}⎭

[13]: for i, l in enumerate(sol):
lxn = complex(l[x].n()) # complex wandelt sympy Summe (a+i*b) in python␣

↪complex um
lyn = complex(l[y].n())
print(f'{i}. Lsg \t x: {lxn.real:9.6f}{lxn.imag:+9.6f}i\t y: {lyn.real:9.

↪6f}{lyn.imag:+9.6f}i')

0. Lsg x: -0.684040-0.000000i y: 1.879385+0.000000i
1. Lsg x: 0.684040+0.000000i y: 1.879385+0.000000i
2. Lsg x: -1.285575+0.000000i y: -1.532089+0.000000i
3. Lsg x: 1.285575-0.000000i y: -1.532089+0.000000i
4. Lsg x: -1.969616+0.000000i y: -0.347296-0.000000i
5. Lsg x: 1.969616-0.000000i y: -0.347296-0.000000i

Beispiel (Fibonacci Zahlen) Die Fibonacci-Zahlen definiert durch die Rekursion

𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 mit 𝑓0 = 0, 𝑓1 = 1

können auch durch 𝑓𝑛 = 𝑎𝑥𝑛 + 𝑏𝑦𝑛 berechnet werden.

Wir bestimmen die 𝑎, 𝑏, 𝑥, 𝑦 .

[14]: a, b, x, y = symbols("a b x y")
unb = [a, b, x, y]

[15]: def fib(n):
return a*x**n + b*y**n

[16]: # Menge der nichtlinearen Gleichungen
nls = FiniteSet()
for n_ in range(1, 5):

nls |= {Eq(fibonacci(n_), fib(n_))}

alternativ mit einer Liste
nll = []
for n_ in range(1, 5):

nll += [Eq(fibonacci(n_), fib(n_))]

display(nls)
display(nll) # solve und nonlinsolve kommen mit beiden zurecht

5

{1 = 𝑎𝑥 + 𝑏𝑦, 1 = 𝑎𝑥2 + 𝑏𝑦2, 2 = 𝑎𝑥3 + 𝑏𝑦3, 3 = 𝑎𝑥4 + 𝑏𝑦4}
[1 = 𝑎𝑥 + 𝑏𝑦, 1 = 𝑎𝑥2 + 𝑏𝑦2, 2 = 𝑎𝑥3 + 𝑏𝑦3, 3 = 𝑎𝑥4 + 𝑏𝑦4]

[17]: ls_solve = solve(nll) # solve liefert eine Liste mit Dictionaries für die␣
↪Unbekannten

ls_solve

[17]:
[{𝑎 ∶ −

√
5

5 , 𝑏 ∶
√

5
5 , 𝑥 ∶ 1

2 −
√

5
2 , 𝑦 ∶ 1

2 +
√

5
2 } , {𝑎 ∶

√
5

5 , 𝑏 ∶ −
√

5
5 , 𝑥 ∶ 1

2 +
√

5
2 , 𝑦 ∶ 1

2 −
√

5
2 }]

[18]: ls_nls = nonlinsolve(
nls, unb) # nonlinsolve liefert eine Menge mit (geordneten) Tupeln.

#Die Ordnung ist die in der Liste der Variablen
ls_nls

[18]:
{(−

√
5

5 ,
√

5
5 , 1

2 −
√

5
2 , 1

2 +
√

5
2) , (

√
5

5 , −
√

5
5 , 1

2 +
√

5
2 , 1

2 −
√

5
2)}

[19]: lsg = {var_ : erg_ for erg_, var_ in zip(list(ls_nls)[0],unb)}
lsg # das ist der erste Eintrag von ls_solve

[19]:
{𝑎 ∶ −

√
5

5 , 𝑏 ∶
√

5
5 , 𝑥 ∶ 1

2 −
√

5
2 , 𝑦 ∶ 1

2 +
√

5
2 }

[20]: n = symbols('n', integer=True)
fib(n).subs(lsg)

[20]:
−

√
5 (1

2 −
√

5
2)

𝑛

5 +
√

5 (1
2 +

√
5

2)
𝑛

5
[21]: for n_ in range(5):

print(fibonacci(n_), (fib(n_).subs(lsg)))

0 0
1 -sqrt(5)*(1/2 - sqrt(5)/2)/5 + sqrt(5)*(1/2 + sqrt(5)/2)/5
1 -sqrt(5)*(1/2 - sqrt(5)/2)**2/5 + sqrt(5)*(1/2 + sqrt(5)/2)**2/5
2 -sqrt(5)*(1/2 - sqrt(5)/2)**3/5 + sqrt(5)*(1/2 + sqrt(5)/2)**3/5
3 -sqrt(5)*(1/2 - sqrt(5)/2)**4/5 + sqrt(5)*(1/2 + sqrt(5)/2)**4/5

[22]: for n_ in range(10):
if simplify(fibonacci(n_) - fib(n_).subs(lsg)): # 0 ist False

raise ValueError(f"ungleich für n={n_}")

Kein Fehler, passt.

Wir prüfen jetzt die Rekursionsgleichung 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛

6

[23]: Eq(fib(n + 2), fib(n + 1) + fib(n)).subs(lsg)

[23]:

−
√

5 (1
2 −

√
5

2)
𝑛+2

5 +
√

5 (1
2 +

√
5

2)
𝑛+2

5 = −
√

5 (1
2 −

√
5

2)
𝑛

5 −
√

5 (1
2 −

√
5

2)
𝑛+1

5 +
√

5 (1
2 +

√
5

2)
𝑛

5 +
√

5 (1
2 +

√
5

2)
𝑛+1

5
[24]: (fib(n + 2) - fib(n + 1) - fib(n)).subs(lsg).expand()

[24]: 0

1.2 Python rechnet komplex

[25]: I**2

[25]: −1
[26]: exp(I * pi / 2)

[26]: 𝑖
[27]: ((2 + I)**3).expand()

[27]: 2 + 11𝑖
[28]: a = x + I * y

a

[28]: 𝑥 + 𝑖𝑦
[29]: (a**2).expand()

[29]: 𝑥2 + 2𝑖𝑥𝑦 − 𝑦2

[30]: re(a**2).expand()

[30]: (re (𝑥))2 − 2 re (𝑥) im (𝑦) − (re (𝑦))2 − 2 re (𝑦) im (𝑥) − (im (𝑥))2 + (im (𝑦))2

[31]: re(a)

[31]: re (𝑥) − im (𝑦)

[32]: im(a)

[32]: re (𝑦) + im (𝑥)

[33]: x, y = symbols('x y', real=True)
z = x + I*y

7

[34]: re(z**2).expand()

[34]: 𝑥2 − 𝑦2

[35]: abs(z)

[35]: √𝑥2 + 𝑦2

1.3 Vereinfachen und zusammenfassen
vgl. Lektion 2

[36]: x, y, z, a, b, c = symbols('x y z a b c')

1.3.1 faktorisieren (factor)

[37]: q = x**2 + 2 * x + 1

[38]: h = factor(q)
h

[38]: (𝑥 + 1)2

[39]: q.factor()

[39]: (𝑥 + 1)2

1.3.2 ausmultiplizieren (expand)

[40]: h

[40]: (𝑥 + 1)2

[41]: h.expand()

[41]: 𝑥2 + 2𝑥 + 1
[42]: expand(h)

[42]: 𝑥2 + 2𝑥 + 1

1.3.3 rationale Ausdrücke in gekürzte Standardform bringen

[43]: f = (x**2 - y**2)/(x+y)**2
f

[43]: 𝑥2 − 𝑦2

(𝑥 + 𝑦)2

8

[44]: cancel(f)

[44]: 𝑥 − 𝑦
𝑥 + 𝑦

[45]: ratsimp(f)

[45]:
− 2𝑦

𝑥 + 𝑦 + 1

1.3.4 collect und coeff

[46]: g = 0
for j in range(4):

g += (x + j * y + (j * x - y) * exp(y))**j
g

[46]: 𝑥 + 𝑦 + (𝑥 − 𝑦) 𝑒𝑦 + (𝑥 + 2𝑦 + (2𝑥 − 𝑦) 𝑒𝑦)2 + (𝑥 + 3𝑦 + (3𝑥 − 𝑦) 𝑒𝑦)3 + 1

[47]: f = expand(g) # expand als Funktion # f = g.expand() expand als Methode
f

[47]: 27𝑥3𝑒3𝑦 + 27𝑥3𝑒2𝑦 + 9𝑥3𝑒𝑦 + 𝑥3 − 27𝑥2𝑦𝑒3𝑦 + 63𝑥2𝑦𝑒2𝑦 + 51𝑥2𝑦𝑒𝑦 + 9𝑥2𝑦 + 4𝑥2𝑒2𝑦 + 4𝑥2𝑒𝑦 + 𝑥2 +
9𝑥𝑦2𝑒3𝑦 − 51𝑥𝑦2𝑒2𝑦 + 63𝑥𝑦2𝑒𝑦 + 27𝑥𝑦2 − 4𝑥𝑦𝑒2𝑦 + 6𝑥𝑦𝑒𝑦 + 4𝑥𝑦 + 𝑥𝑒𝑦 + 𝑥 − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 − 27𝑦3𝑒𝑦 +
27𝑦3 + 𝑦2𝑒2𝑦 − 4𝑦2𝑒𝑦 + 4𝑦2 − 𝑦𝑒𝑦 + 𝑦 + 1

[48]: collect(f, x) # collect als Funktion

[48]: 𝑥3 (27𝑒3𝑦 + 27𝑒2𝑦 + 9𝑒𝑦 + 1) + 𝑥2 (−27𝑦𝑒3𝑦 + 63𝑦𝑒2𝑦 + 51𝑦𝑒𝑦 + 9𝑦 + 4𝑒2𝑦 + 4𝑒𝑦 + 1) +
𝑥 (9𝑦2𝑒3𝑦 − 51𝑦2𝑒2𝑦 + 63𝑦2𝑒𝑦 + 27𝑦2 − 4𝑦𝑒2𝑦 + 6𝑦𝑒𝑦 + 4𝑦 + 𝑒𝑦 + 1) − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 − 27𝑦3𝑒𝑦 +
27𝑦3 + 𝑦2𝑒2𝑦 − 4𝑦2𝑒𝑦 + 4𝑦2 − 𝑦𝑒𝑦 + 𝑦 + 1

[49]: f.collect(exp(y)) # collect als Methode

[49]: 𝑥3 + 9𝑥2𝑦 + 𝑥2 + 27𝑥𝑦2 + 4𝑥𝑦 + 𝑥 + 27𝑦3 + 4𝑦2 + 𝑦 +
(27𝑥3 − 27𝑥2𝑦 + 9𝑥𝑦2 − 𝑦3) 𝑒3𝑦 + (27𝑥3 + 63𝑥2𝑦 + 4𝑥2 − 51𝑥𝑦2 − 4𝑥𝑦 + 9𝑦3 + 𝑦2) 𝑒2𝑦 +
(9𝑥3 + 51𝑥2𝑦 + 4𝑥2 + 63𝑥𝑦2 + 6𝑥𝑦 + 𝑥 − 27𝑦3 − 4𝑦2 − 𝑦) 𝑒𝑦 + 1

[50]: collect(f, exp(y), exact=True)

[50]: 27𝑥3𝑒3𝑦 + 27𝑥3𝑒2𝑦 + 𝑥3 − 27𝑥2𝑦𝑒3𝑦 + 63𝑥2𝑦𝑒2𝑦 + 9𝑥2𝑦 + 4𝑥2𝑒2𝑦 + 𝑥2 + 9𝑥𝑦2𝑒3𝑦 −
51𝑥𝑦2𝑒2𝑦 + 27𝑥𝑦2 − 4𝑥𝑦𝑒2𝑦 + 4𝑥𝑦 + 𝑥 − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 + 27𝑦3 + 𝑦2𝑒2𝑦 + 4𝑦2 + 𝑦 +
(9𝑥3 + 51𝑥2𝑦 + 4𝑥2 + 63𝑥𝑦2 + 6𝑥𝑦 + 𝑥 − 27𝑦3 − 4𝑦2 − 𝑦) 𝑒𝑦 + 1

[51]: f.collect(x**2, exact=True)

[51]: 27𝑥3𝑒3𝑦 + 27𝑥3𝑒2𝑦 + 9𝑥3𝑒𝑦 + 𝑥3 + 𝑥2 (−27𝑦𝑒3𝑦 + 63𝑦𝑒2𝑦 + 51𝑦𝑒𝑦 + 9𝑦 + 4𝑒2𝑦 + 4𝑒𝑦 + 1) + 9𝑥𝑦2𝑒3𝑦 −
51𝑥𝑦2𝑒2𝑦 + 63𝑥𝑦2𝑒𝑦 + 27𝑥𝑦2 − 4𝑥𝑦𝑒2𝑦 + 6𝑥𝑦𝑒𝑦 + 4𝑥𝑦 + 𝑥𝑒𝑦 + 𝑥 − 𝑦3𝑒3𝑦 + 9𝑦3𝑒2𝑦 − 27𝑦3𝑒𝑦 + 27𝑦3 +
𝑦2𝑒2𝑦 − 4𝑦2𝑒𝑦 + 4𝑦2 − 𝑦𝑒𝑦 + 𝑦 + 1

9

[52]: collect(f, x).coeff(x**2)

[52]: −27𝑦𝑒3𝑦 + 63𝑦𝑒2𝑦 + 51𝑦𝑒𝑦 + 9𝑦 + 4𝑒2𝑦 + 4𝑒𝑦 + 1
[53]: collect(f, exp(y)).coeff(exp(y))

[53]: 9𝑥3 + 51𝑥2𝑦 + 4𝑥2 + 63𝑥𝑦2 + 6𝑥𝑦 + 𝑥 − 27𝑦3 − 4𝑦2 − 𝑦

Achtung
[54]: g = y + (x + 2 * z) * exp(x)

g.expand()

[54]: 𝑥𝑒𝑥 + 𝑦 + 2𝑧𝑒𝑥

[55]: g.expand().coeff(x, 0)

[55]: 𝑦
ausdruck.coef(x, 0)

gibt die von x unabhängingen Terme zurück. Der Term 2 ∗ 𝑧 ∗ exp(𝑥) wird als von 𝑥 abhängig
interpretiert.

[56]: expx = symbols('expx')
g.replace(exp(x), expx).expand().coeff(x, 0).replace(expx, exp(x))

[56]: 𝑦 + 2𝑧𝑒𝑥

[57]: g.replace(exp(x), expx).expand().coeff(x, 0)

[57]: 2𝑒𝑥𝑝𝑥𝑧 + 𝑦

1.3.5 Kettenbruch

[58]: k = 1+x/(x -2/(x-4/(8-x))) # Kettenbruch (continued fraction)
k

[58]: 𝑥
𝑥 − 2

𝑥− 4
8−𝑥

+ 1

[59]: cancel(k)

[59]: 2𝑥3 − 16𝑥2 + 6𝑥 + 16
𝑥3 − 8𝑥2 + 2𝑥 + 16

[60]: simplify(k)

[60]: 𝑥
𝑥 − 2

𝑥+ 4
𝑥−8

+ 1

10

[61]: ratsimp(k)

[61]: 2𝑥 − 16
𝑥3 − 8𝑥2 + 2𝑥 + 16 + 2

1.3.6 Partialbruchzerlegung

[62]: h = (4*x**3+10*x**2+12)/(x**4+3*x**3+3*x**2+x)
h

[62]: 4𝑥3 + 10𝑥2 + 12
𝑥4 + 3𝑥3 + 3𝑥2 + 𝑥

[63]: h = apart(h) # Partialbruchzerlegung (parital fraction decomposition)
h

[63]:
− 8

𝑥 + 1 − 10
(𝑥 + 1)2 − 18

(𝑥 + 1)3 + 12
𝑥

[64]: together(h)

[64]: 2 (−4𝑥 (𝑥 + 1)2 − 5𝑥 (𝑥 + 1) − 9𝑥 + 6 (𝑥 + 1)3)
𝑥 (𝑥 + 1)3

[65]: ratsimp(h)

[65]: 4𝑥3 + 10𝑥2 + 12
𝑥4 + 3𝑥3 + 3𝑥2 + 𝑥

1.3.7 Vereinfachung unter Annahmen (assumptions)

[66]: f = log(y / x) - log(y) + log(x)
f

[66]: log (𝑥) − log (𝑦) + log (𝑦
𝑥)

[67]: simplify(f)

[67]: log (𝑥) − log (𝑦) + log (𝑦
𝑥)

[68]: x, y = symbols('x y', positive=True)
f = log(y / x) - log(y) + log(x)
simplify(f)

[68]: 0

11

1.3.8 trigsimp und powsimp

[69]: x, y = symbols('x y')
x.assumptions0, y.assumptions0

[69]: ({'commutative': True}, {'commutative': True})

[70]: f = sin(x)**4 - 2 * sin(x)**2 * cos(x)**2 + cos(x)**4
f

[70]: sin4 (𝑥) − 2 sin2 (𝑥) cos2 (𝑥) + cos4 (𝑥)

[71]: simplify(f)

[71]: cos (4𝑥)
2 + 1

2
[72]: trigsimp(f)

[72]: cos (4𝑥)
2 + 1

2
[73]: expand(cos(x + y)) # funktioniert nicht

[73]: cos (𝑥 + 𝑦)

[74]: expand_trig(cos(x + y))

[74]: − sin (𝑥) sin (𝑦) + cos (𝑥) cos (𝑦)

[75]: expand_trig(sinh(x + y))

[75]: sinh (𝑥) cosh (𝑦) + sinh (𝑦) cosh (𝑥)

[76]: a = symbols('a')

[77]: powsimp(x**a * x**b)

[77]: 𝑥𝑎+𝑏

[78]: trigsimp(x**a * x * sin(x) / cos(x))

[78]: 𝑥𝑥𝑎 tan (𝑥)

[79]: powsimp(x**a * x * sin(x) / cos(x))

[79]: 𝑥𝑎+1 sin (𝑥)
cos (𝑥)

[80]: simplify(x**a * x * sin(x) / cos(x))

[80]:

12

𝑥𝑎+1 tan (𝑥)

[81]: powsimp(x**a * y**a) # Uebungen

[81]: 𝑥𝑎𝑦𝑎

[82]: powsimp((x**a)**b)

[82]: (𝑥𝑎)𝑏

1.4 Umformungen (rewrite)

[83]: sin(2 * x).rewrite(tan)

[83]: 2 tan (𝑥)
tan2 (𝑥) + 1

[84]: sin(2 * x).rewrite(cos)

[84]: cos (2𝑥 − 𝜋
2)

[85]: sin(2 * x).rewrite(exp)

[85]:
−𝑖 (𝑒2𝑖𝑥 − 𝑒−2𝑖𝑥)

2
[86]: tan(x).rewrite(sin)

[86]: 2 sin2 (𝑥)
sin (2𝑥)

1.5 Reihenentwicklung (Taylor)
Für eine glatte Funktion 𝑓 ist

𝑇 𝑓(𝑥; 𝑥0) ∶=
∞

∑
𝑛=0

𝑓 (𝑛)(𝑥0)
𝑛! (𝑥 − 𝑥0)𝑛

die Taylorreihe. Sie muss nicht konvergieren!

[87]: # die ersten acht Terme um den Entwicklungspunkt 0
series(exp(x), x, 0, 8)

[87]:
1 + 𝑥 + 𝑥2

2 + 𝑥3

6 + 𝑥4

24 + 𝑥5

120 + 𝑥6

720 + 𝑥7

5040 + 𝑂 (𝑥8)

Falls die Funktion hinreichend oft differenzierbar ist, ist der Taylorrest, das was sympy als 𝑂(𝑥𝑛)
angibt klein.

Eine Funktion 𝑓 ist in 𝒪(𝑥𝑛, 𝑥 → 0), falls

lim sup
𝑥→0

∣𝑓(𝑥)
𝑥𝑛 ∣ < ∞.

13

In sympy fehlt das 𝑥 → 0.

[88]: T = 1 + x + O(x**2, (x, 0))
T

[88]: 1 + 𝑥 + 𝑂 (𝑥2)

[89]: (T/x).expand()

[89]: 1
𝑥 + 1 + 𝑂 (𝑥)

[90]: # Taylorentwicklung von ln um x_0 = 1
T2s = {} # dictionary
for k in [1, 2, 3, 10]:

T2s[k] = ln(x).series(x, 1, k+1).removeO()
T2s

[90]:
{1 ∶ 𝑥 − 1, 2 ∶ 𝑥 − (𝑥 − 1)2

2 − 1, 3 ∶ 𝑥 + (𝑥 − 1)3

3 − (𝑥 − 1)2

2 − 1, 10 ∶ 𝑥 − (𝑥 − 1)10

10 + (𝑥 − 1)9

9 − (𝑥 − 1)8

8 + (𝑥 − 1)7

7 − (𝑥 − 1)6

6 + (𝑥 − 1)5

5 − (𝑥 − 1)4

4 + (𝑥 − 1)3

3 − (𝑥 − 1)2

2 − 1}

[91]: fig = plt.figure()
ax = fig.gca()
xn = np.linspace(0.01, 2.6)
for k in T2s:

ax.plot(xn, lambdify(x, T2s[k])(xn), label=f'TaylorPoly Grad {k-1}')

ax.plot(xn, np.log(xn), 'k:', label='ln(x)')
plt.legend(loc=8);

Die Taylorentwicklung kann zu einer Laurententwicklung verallgemeinert werden. Dann kann man

14

auch ∞ als Entwicklungspunkt nehmen, oder Funktionen mit Singularitäten entwickeln (mehr dazu
in Funktiontheorie).

[92]: series(atan(x), x, oo, 5)

[92]: 1
3𝑥3 − 1

𝑥 + 𝜋
2 + 𝑂 (1

𝑥5 ; 𝑥 → ∞)

[93]: L = {}
for n in [4, 6, 10]:

L[n] = series(atan(x), x, oo, n + 1).removeO()
L

[93]:
{4 ∶ 𝜋

2 − 1
𝑥 + 1

3𝑥3 , 6 ∶ 𝜋
2 − 1

𝑥 + 1
3𝑥3 − 1

5𝑥5 , 10 ∶ 𝜋
2 − 1

𝑥 + 1
3𝑥3 − 1

5𝑥5 + 1
7𝑥7 − 1

9𝑥9 }

[94]: xn = np.linspace(1, 10, 100)
fig, ax = plt.subplots()
for n in L:

ax.plot(xn, lambdify(x, L[n])(xn), label=f'"Grad" {n}')

ax.plot(xn, np.arctan(xn), label='arctan(x)')
plt.legend(loc=4);

Beispiel Rationale Approximation Wir suchen eine rationale Approximation an die Wurzel-
funktion, so, dass jeweils der Anfang der Taylorreihe übereinstimmt.

[95]: a = symbols('a:4')
X = symbols('X')
a

[95]:

15

(𝑎0, 𝑎1, 𝑎2, 𝑎3)

[96]: r = (a[0] + a[2] * X) / (1 + a[1] * X + a[3] * X**2)
tr = r.series(X, 0, 4).removeO()
tr

[96]: 𝑋3 (𝑎0 (−𝑎3
1 + 2𝑎1𝑎3) + 𝑎2 (𝑎2

1 − 𝑎3)) + 𝑋2 (𝑎0 (𝑎2
1 − 𝑎3) − 𝑎1𝑎2) + 𝑋 (−𝑎0𝑎1 + 𝑎2) + 𝑎0

[97]: f = (1 + X)**Rational(1, 2)
tf = f.series(X, 0, 4).removeO()
tf

[97]: 𝑋3

16 − 𝑋2

8 + 𝑋
2 + 1

[98]: # Gesucht sind a0, a1, a2 und a3 so, dass tf und tr übereinstimmen
sol = solve(Eq(tr, tf), a)
sol

[98]:
{𝑎0 ∶ 1, 𝑎1 ∶ 1

3 , 𝑎2 ∶ 5
6 , 𝑎3 ∶ − 1

24}

[99]: plot(f, r.subs(sol), tf, (X, -1, 3), legend=True);

1.6 Was ist eine series?
Wenn 𝑓 eine Taylorreihe in dem Punkt hat, dann der Anfang der Taylorreihe.

[100]: cos(x).series(x, 1, 9)

[100]:

16

cos (1) − (𝑥 − 1) sin (1) − (𝑥 − 1)2 cos (1)
2 + (𝑥 − 1)3 sin (1)

6 + (𝑥 − 1)4 cos (1)
24 − (𝑥 − 1)5 sin (1)

120 −
(𝑥 − 1)6 cos (1)

720 + (𝑥 − 1)7 sin (1)
5040 + (𝑥 − 1)8 cos (1)

40320 + 𝑂 ((𝑥 − 1)9 ; 𝑥 → 1)

Wenn f eine Laurentreihe mit endlichem Nebenteil in ∞ hat, dann der Anfang des Haupteils. (mehr
dazu in Funktionenentheorie)

Eine unendliche Reihe der Form
∞

∑
𝑛=−∞

𝑎𝑛(𝑧 − 𝑧0)𝑛 =
∞

∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 +
∞

∑
𝑛=1

𝑎−𝑛(𝑧 − 𝑧0)−𝑛

heißt Laurentreihe mit Entwicklungspunkt 𝑧0, und die Reihen

∞
∑
𝑛=0

𝑎𝑛(𝑧 − 𝑧0)𝑛 bzw.
∞

∑
𝑛=1

𝑎−𝑛(𝑧 − 𝑧0)−𝑛

heißen der Nebenteil bzw. der Hauptteil der Laurentreihe. Eine Laurentreihe konvergiert im Punkt
𝑧 ∈ ℂ, wenn sowohl Haupt- als auch Nebenteil konvergieren.

[101]: g = (x**2 + 2 * x + 1)**2 / (x**2 + 2 * x - 1)
g.series(x, oo)

[101]:
−48

𝑥5 + 20
𝑥4 − 8

𝑥3 + 4
𝑥2 + 3 + 2𝑥 + 𝑥2 + 𝑂 (1

𝑥6 ; 𝑥 → ∞)

Sonst ist ‘series’ kein mathematisch sinnvoller Begriff

[102]: h = exp(x) * g
h

[102]: (𝑥2 + 2𝑥 + 1)2 𝑒𝑥

𝑥2 + 2𝑥 − 1
[103]: exp(x).series(x, oo)

[103]: 𝑒𝑥

[104]: h.series(x, oo)

[104]:
−48𝑒𝑥

𝑥5 + 20𝑒𝑥

𝑥4 − 8𝑒𝑥

𝑥3 + 4𝑒𝑥

𝑥2 + 3𝑒𝑥 + 2𝑥𝑒𝑥 + 𝑥2𝑒𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)

[105]: j = exp(x) * exp(1 / x)
j

[105]: 𝑒 1
𝑥 𝑒𝑥

[106]: j.series(x, oo)

[106]: 𝑒𝑥

120𝑥5 + 𝑒𝑥

24𝑥4 + 𝑒𝑥

6𝑥3 + 𝑒𝑥

2𝑥2 + 𝑒𝑥

𝑥 + 𝑒𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)

17

[107]: j1 = exp(x + 1 / x)
j1

[107]: 𝑒𝑥+ 1
𝑥

[108]: j1.series(x, oo)

[108]: 𝑒𝑥+ 1
𝑥

[109]: j*g

[109]: (𝑥2 + 2𝑥 + 1)2 𝑒 1
𝑥 𝑒𝑥

𝑥2 + 2𝑥 − 1
[110]: (j*g).series(x, oo)

[110]:
−17531𝑒𝑥

560𝑥5 + 10183𝑒𝑥

720𝑥4 − 409𝑒𝑥

120𝑥3 + 47𝑒𝑥

8𝑥2 + 25𝑒𝑥

6𝑥 + 11𝑒𝑥

2 + 3𝑥𝑒𝑥 + 𝑥2𝑒𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)

[111]: (j1*g).series(x, oo)

[111]:
−48𝑒𝑥+ 1

𝑥

𝑥5 + 20𝑒𝑥+ 1
𝑥

𝑥4 − 8𝑒𝑥+ 1
𝑥

𝑥3 + 4𝑒𝑥+ 1
𝑥

𝑥2 + 3𝑒𝑥+ 1
𝑥 + 2𝑥𝑒𝑥+ 1

𝑥 + 𝑥2𝑒𝑥+ 1
𝑥 + 𝑂 (𝑒𝑥

𝑥6 ; 𝑥 → ∞)

18

	Lektion 9
	Gleichungssysteme
	Lineare Systeme
	Nichtlineare Systeme

	Python rechnet komplex
	Vereinfachen und zusammenfassen
	faktorisieren (factor)
	ausmultiplizieren (expand)
	rationale Ausdrücke in gekürzte Standardform bringen
	collect und coeff
	Kettenbruch
	Partialbruchzerlegung
	Vereinfachung unter Annahmen (assumptions)
	trigsimp und powsimp

	Umformungen (rewrite)
	Reihenentwicklung (Taylor)
	Was ist eine series?

