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1 Lektion 9

1.1 Gleichungssysteme
Zu

Lo
F:R*—=R™ : —
T

n—1
~———

=T

suche z, so, dass F(z) = 0.



[1]: | #Zmatplotlib notebook
Jmatplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = [4, 3]
from sympy import *
a, b = symbols('a b')
X = symbols('x:2")
init_printing()
x # x ist ein Tupel mit zwei zwei Symbolen

[1]:

(2o, 1)

1.1.1 Lineare Systeme

Das machen wir nichste Woche ausfiihrlicher, sobald wir Matrizen eingefiihrt haben.

[2]: 1gs = (Eq(x[0]+x[1], a), Eq(2*x[0]-b*x[1], 3))
1gs

[2] : (170 + T = a, _bZEl + 2170 = 3)

[3]: sol = linsolve(lgs, x)
sol

[3]={<ab+3 2a—3>}

b+2" b+2

[4]: sol = solve(lgs, x)
sol

[41:{ ~ab+3 '2a—3}
T T e

1.1.2 Nichtlineare Systeme

[5]: nls = [Eq(x[0]**2+x[1]**2, 1), Eq(x[0], x[1])]
nls

[5]:

[25 + 27 =1, 29 = 2]

[6]: lsg = nonlinsolve(nls, x)
1sg

[6]: o) o) /2 2
52 )l

[7]: 1lsg = solve(nls, x, )
1sg



[7]:

[8]:
[8]:

[9]1:

[10]:

[x%_'_x% =1, z :1'1]

xn = np.linspace(-2 , 2, 100)

X = np.meshgrid(xn, xn) # X <st Tupel aus X0, X1

fig, ax = plt.subplots()

ax.contour (¥*X, lambdify(x, nls[0].lhs-nls[0].rhs) (*X), [0], colors='blue')
ax.contour (*X, lambdify(x, nls[1].lhs-nls[1].rhs) (*X), [0], colors='green')
ax.axis('equal');

2.0
1.5+
1.0~
0.5 A
0.0 4
—0.5 -
—1.04
—1.5 -

_2.D 1 T T

# alternativ

xn = np.linspace(-2 , 2, 100)

X, Y = np.meshgrid(xn, xn)

fig, ax = plt.subplots()

ax.contour(X, Y, lambdify((x[0], x[1]), nls[0].lhs-nls[0].rhs) (X, Y), [O],.
<colors='blue')

ax.contour(X, Y, lambdify((x[0], x[1]), nls[1].lhs-nls[1].rhs) (X, Y), [O],.
~colors='green')

ax.axis('equal');



2.0
1.5+
1.0~
0.5 A
0.0 4
—0.5 -
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—1.5 -

_2.D 1 T T T

[11]: |x, y = symbols('x y') # jetzt ist = ein einziges Symbol

f = xxx2 + yk*x2 + 3 * xk*k2 * y - y*k*3

g = X**x2 + yk*2

xn = np.linspace(-3, 3, 100)

X, Y = np.meshgrid(xn, xn)

fig, ax = plt.subplots()

ax.contour(X, Y, lambdify((x, y), £)(X, Y), [0], colors='blue')

ax.contour(X, Y, lambdify((x, y), g) (X, Y), [4], colors='red') # g(z,y) = 4,
~Hoehenlinie

ax.axis('equal');




[12]:

[12]:

[13]:

[14]:

[15]:

[16]:

sol = solve([f, g-4]1 )
1lsg = soll[0]
1sg

o

. , X 2
6 —3/5—“3’%/2“@—%;ﬁ’+(2+2ﬁz‘)3 1 s[1 V/3i
«T:—\/E s Y '+ 5"‘7
(1+v/3i) e

for i, 1 in enumerate(sol):

1xn = complex(1[x].n()) # complex wandelt sympy Summe (a+i*b) in pythomn,

—complex um
lyn = complex(1[y]l.n())

print(f'{i}. Lsg \t x: {lxn.real:9.6f}{1xn.

~6f}{1lyn.imag:+9.6£f}i")

0. Lsg x: -0.684040-0.000000i y: 1.879385+0.
1. Lsg x: 0.684040+0.0000001 y: 1.879385+0.
2. Lsg x: -1.285575+0.000000i y: -1.532089+0.
3. Lsg x: 1.285575-0.000000i y: -1.532089+0.
4. Lsg x: -1.969616+0.0000001 y: -0.347296-0.
5. Lsg x: 1.969616-0.000000i y: -0.347296-0.

imag:+9.6£f}i\t y: {lyn.real:9.

0000001
0000001
0000001
0000001
0000001
0000001

Beispiel (Fibonacci Zahlen) Die Fibonacci-Zahlen definiert durch die Rekursion

Jnio = fpy1 + [ mit fo =0, f; =1

koénnen auch durch f,, = az™ + by™ berechnet werden.

Wir bestimmen die a,b,z,y .

a, b, x, y = symbols("a b x y")
unb = [a, b, x, y]

def fib(n):
return a*x**n + bkxy**n

# Menge der nichtlinearen Gleichungen
nls = FiniteSet()
for n_ in range(l, 5):

nls |= {Eq(fibonacci(n_), fib(n_))}

# alternativ mit einer Liste
nll = []
for n_ in range(l, 5):
nll += [Eq(fibonacci(n_), fib(n_))]

display(nls)

display(nll) # solve und nonlinsolve kommen mit beiden zurecht



{1=ax+by,1 =az?+by? 2 = ax®+ by?,3 = az* + by*}
[1=ax+by, 1=az?+by? 2=az®+by®, 3=ax?+by!

[17]: 1s_solve = solve(nll) # solwve liefert eine Liste mit Dictionaries fiur diey

~Unbekannten
1s_solve
171 :
e VB VB 1 VB 1.4B VB VB 1. VB 1 4B
a:_iab:iaxzf_iay:f—kivaziab:_i)x:i—ki?y:*_i
5 5 2 2 2 2 5 5 2 2 2

[18]: 1s_nls = nonlinsolve(
nls, unb) # nonlinsolve liefert eine Menge mit (geordneten) Tupeln.
#Die Ordnung ist die in der Liste der Variablen

1s_nls
(VB VB 1 VB 1 VB (VB VB 1 VB 1 B
5’ 572 272 2 ’ 5’ 572 272 2

[19]: 1sg = {var_ : erg_ for erg_, var_ in zip(list(ls_nls) [0],unb)?}
1sg # das ist der erste Eintrag wvon ls_solve

7,[)' \/gay;l_k\/g}

[19]:
{a,:—\/5 'E,x: —
5 2 2 2

[20]: n = symbols('n', integer=True)
fib(n) .subs(1lsg)
[20] : n n
=) )
) )

[21]: for n_ in range(5):
print(fibonacci(n_), (fib(n_).subs(lsg)) )

00

1 -sqrt(6)*(1/2
1 -sqrt(5)*(1/2
2 -sqrt(5)*(1/2
3 -sqrt(5)*(1/2

sqrt(5)/2)/5 + sqrt(5)*(1/2 + sqrt(5)/2)/5

sqrt(5)/2)*x2/5 + sqrt(5)*(1/2 + sqrt(5)/2)**2/5
sqrt(5)/2)*x3/5 + sqrt(5)*(1/2 + sqrt(5)/2)*x3/5
sqrt (5)/2)**4/5 + sqrt(5)*(1/2 + sqrt(5)/2)**4/5

[22]: for n_ in range(10):
if simplify(fibonacci(n_) - fib(n_).subs(lsg)): # 0 ist False
raise ValueError(f"ungleich fir n={n_}")

Kein Fehler, passt.
Wir priifen jetzt die Rekursionsgleichung f, ., = f,,.1 + f,



[23]:

[23]:

[24]:

[24] :

[25]:

[25]:

[26] :

[26]:

[27]:

[27]:

[28]:

[28]:

[29]:

[29]:

[30]:

[30]:

[31]:

[31]:

[32]:

[32]:

[33]:

Eq(fib(n + 2), fib(n + 1) + fib(n)) .subs(lsg)

n+2 n+2 n n+1 n
GU—)" R VA VG- V)
_ + —_ _
5 > 5 5 S
Vil %)
)

(fib(n + 2) - fib(n + 1) - fib(n)).subs(lsg) .expand()
0

1.2 Python rechnet komplex

I*xx2

—1

exp(I * pi / 2)

i

((2 + I)**3) .expand()
2+ 11
a=x+1=x*y

a
T + 1y

(a**2) .expand ()
2% 4 2izy — >
re(a**2) .expand ()

(re (2))” — 2re (z) im (y) — (re (y))* — 2re (y) im (z) — (im (x))* + (im (y))*

re(a)

re (x) — im (y)

im(a)

re (y) + im ()

X, y = symbols('x y', real=True)
z

=X+I*y



[34]:

[34]:

[35]:

[35]:

[36]:

[37]:

[38]:

[38]:

[39]:

[39]:

[40]:

[40] :

[41]:

[41] :

[42] :

[42] :

[43]:

[43] :

re(z**2) .expand ()

22 — o2

abs(z)

Va2 + 2

1.3 Vereinfachen und zusammenfassen
vgl. Lektion 2

X, y, Z, a, b, ¢ = symbols('x y z a b c')

1.3.1 faktorisieren (factor)

q = x*¥*2 + 2 x x + 1

h
h

factor(q)

(z+1)°

q.factor()
(x+1)

1.3.2 ausmultiplizieren (expand)

h

(z+1)*

h.expand ()

2 4+2x+1

expand (h)
22+ 22+ 1

1.3.3 rationale Ausdriicke in gekiirzte Standardform bringen

f = (xx*2 - y*x*x2)/(x+y)**2
f

2?2 — 2

(x+y)



[44] :

[44] :

[45] :

[45] :

[46] :

[46] :

[47]:

[47] :

[48] :

[48] :

[49] :

[49] :

[50]:

[50]:

[51]:

[51]:

cancel (f)

r—y
r+y

ratsimp(f)

2y
r+y

+1

1.3.4 collect und coeff

g=0
for j in range(4):

g+=(x+3j*xy+ (*x-y)* exp(y))s*j
g

syt (@—y e+ (z+2y+ 2e—y)e¥)’ + (x+3y+ Bz —y)e?)’ +1

f = expand(g) # ezpand als Funktion # f = g.ezpand() expand als Methode
f

272363V + 2723e?Y + 9x3e¥ + 23 — 272%yeV + 632%ye?Y + 51la2yeY + 9x%y + 4a2e?Y + 42%e¥ + 2% +
9zy%e3Y — 5lzy?e?? + 63xy2eY + 2Txy? — dwye?? + 6xyeY + dwy + xe¥ + x —y3edV 4+ 9yPe? — 27y3e¥ +
273 + y?e? — dy?e¥ + 4y? —ye¥ +y + 1

collect(f, x) # collect als Funktion
23 (273 +27e?Y +9e¥ +1) +  2? (—2Tye + 63ye + 5lye¥ + 9y + 4e®¥ +4e¥ +1)  +

z (9y%e — 5ly?e + 63y%e¥ + 27y — dye® + 6ye? + 4y +e¥ + 1) — y2e + 9y3e?¥ — 27yPe¥ +
273 + y?e? — dy?e + 4y? —ye¥ +y + 1

f.collect(exp(y)) # collect als Methode
2 4+ 9%y + 22 4+ 2wy 4+ 4wy + o 4+ 2Ty + 42+ oy +

(2723 — 2722y + 9zy? —y3) ¥ + (2723 +632%y + 422 —5lay? —dwy + 9y +y?) e?  +
(923 + 512y + 42? + 63zy® + 6oy + x — 27Ty —4y® —y) eV + 1

collect(f, exp(y), exact=True)
27x3e3Y + 2723e?Y + 23 — 272%yed” + 632%ye® + 922y + 4z + 22 + 9ayledV —

Slzy?e?¥ + 27xy? — daye®™ + 4oy + = — y3e3 + 9y3e?Y + 27y3 + e + 42 + y +
(923 + 512y + 42? + 63zy® + 6zy + x — 27Ty —4y® —y) eV + 1

f.collect (x**2, exact=True)
27x3e3 +27x3e + 923e¥ + 2 + 22 (—2Tye3Y + 63ye + 5lye? + 9y + 4e%¥ + 4e¥ + 1) + 9zye —

51zy?e?y + 63xy2e? + 27xy? — dxye® + 6zyeY + 4oy + xe¥ + x — y3e3Y + 9y3e?¥ — 2Ty3eY + 2793 +
y?e? —dy?eV + 4y —yeV +y +1



[652]: collect(f, x).coeff (x**2)

52]:
[52) —27ye3Y + 63ye?¥ + 5lyeY + 9y + 4e?Y + 4e¥ + 1

[53]: collect(f, exp(y)).coeff(exp(y))

53]:
15315 g + 512y + 422 + 63zy* + 62y + v — 27y> — 4y* —y

Achtung
[64]: g =y + (x + 2 * z) * exp(x)
g.expand ()

4]:
[54] re’ +y+ 2ze”

[55]: g.expand() .coeff(x, 0)

[55]:

ausdruck.coef (x, 0)

gibt die von x unabhéngingen Terme zuriick. Der Term 2 % z % exp(z) wird als von x abhingig
interpretiert.

[66]: expx = symbols('expx')
g.replace(exp(x), expx).expand().coeff(x, 0).replace(expx, exp(x))

[56]: y+ 22"

[57]: g.replace(exp(x), expx).expand().coeff(x, 0)

[57]: 2exprz + Yy

1.3.5 Kettenbruch

[68]: k = 1+x/(x -2/(x-4/(8-x))) # Kettenbruch (continued fraction)
k

58] :
[58] LQ+1
T — 1
:177871}

[59]: cancel (k)

(591 928 — 1622 + 62 + 16
3 — 8x2 + 2z + 16

[60]: simplify(k)

60] : x
[]724-1

x J—
s

10



[61]: ratsimp(k)

[61]: 2 — 16

2
3173’—891:2+2:r—1—16jL

1.3.6 Partialbruchzerlegung

[62]: h = (4*xx**x3+10%x*x*2+12) / (xk*4+3*xx**x3+3%x*k*2+x%)
h

(6215 4% 41022 412
x4+ 323 + 322 + 2

[63]: h = apart(h) # Partialbruchzerlegung (parital fraction decomposition)
h

[63]: 8 10 18 12

z+1  (z+1)° (417 @

[64]: together(h)

O g (e et 1)’ e (e + 1)~ 92 462+ 1))

a;(a;+1)3

[65]: ratsimp(h)

[651+ 428 11022 4 12
xt + 323 + 322+

1.3.7 Vereinfachung unter Annahmen (assumptions)

[66]: f = log(y / x) - log(y) + log(x)
f

(e6] :

log () — log (y) + log (%)

[67]: simplify(f)

[67]:

log () —log (y) + log (%)

[68]: x, y = symbols('x y', positive=True)
f = log(y / x) - log(y) + log(x)
simplify (f)

[68]: 0

11



[69]:

[69]:

[70]:

[70]:

[71]:

[71]:

[72]:

[72]:

[73]:

[73]:

[74]:

[74] :

[75]:

[75]:

[76]:

[77]:

[77]:

[78]:

[78]:

[79]:

[79]:

[80]:

[80]:

1.3.8 trigsimp und powsimp

X, y = symbols('x y')
x.assumptionsO, y.assumptionsO

({'commutative': Truel}, {'commutative': Truel})

f = sin(x)**4 - 2 *x sin(x)**2 * cos(x)**2 + cos(x)**4
f

sin® () — 2sin? () cos? (z) + cos? ()

simplify (£)

cos(4z) 1
2 2

trigsimp(f)

cos(4w) 1
2

expand(cos(x + y)) # funktioniert nicht

cos (z + y)

expand_trig(cos(x + y))

—sin () sin (y) + cos (x) cos (y)
expand_trig(sinh(x + y))
sinh (x) cosh (y) + sinh (y) cosh (z)
a = symbols('a')
powsimp(x**a * x**b)

xa+b

trigsimp(x**a * x * sin(x) / cos(x))
xx®tan (x)

powsimp(x**a * x * sin(x) / cos(x))

"L gin ()

cos (z)

simplify(x**a * x * sin(x) / cos(x))

12



%" tan ()
[81]: powsimp(x**a * y**a) # Uebungen

[81]: iy

[82] : powsimp((x**a)**b)

[82]:

()
1.4 Umformungen (rewrite)
[83]: sin(2 * x).rewrite(tan)

(831 2tan (x)

tan® (z) + 1

[84]: sin(2 * x).rewrite(cos)

[84]: cos (236 — g)

[85]: sin(2 * x).rewrite(exp)
[851: (ezm — ¢ 2i7)

B 2

[86]: tan(x).rewrite(sin)

[86]: 2 sin? (x)

sin (2z)
1.5 Reihenentwicklung (Taylor)

Fiir eine glatte Funktion f ist
o~ f () n
Tf(x;2g) == Z ol 0 (x — o)
n=0 :

die Taylorreihe. Sie muss nicht konvergieren!

[87]: # die ersten acht Terme um den Entwicklungspunkt O
series(exp(x), x, 0, 8)

[87]: - R 25 26 27
1 T T T S R
Trt T T T 190 T 720 T 5040

Falls die Funktion hinreichend oft differenzierbar ist, ist der Taylorrest, das was sympy als O(z™)
angibt klein.

+ O (29)

Eine Funktion f ist in O(z"™,x — 0), falls

lim sup
z—0

f(z)

<o

13



[88]:

[88]

[89]:

[89] :

[90]:

[90] :

[91]:

In sympy fehlt das z — 0.

T=1+x + 0(xx*x2, (x, 0))
T
“14z+0(2?)

(T/x) .expand ()

1
—+14+0(z)
x

# Taylorentwicklung von Iln um z_0 = 1
T2s = {} # dictionary
for k in [1, 2, 3, 10]:
T2s[k] = 1In(x).series(x, 1, k+1).remove0()
T2s

(z—1)°
3

2
—1
{1::b——1,2::r——ttf2)—-L 3:x+

fig = plt.figure()
ax = fig.gca()
xn = np.linspace(0.01, 2.6)
for k in T2s:
ax.plot(xn, lambdify(x, T2s[k]) (xn), label=f'Tayl

ax.plot(xn, np.log(xn), 'k:', label='ln(x)')
plt.legend(loc=8);

orPoly Grad {k-1}')

2 p
11 e
D -
_1 —
_2 —
—— TaylorPoly Grad 0
—3 —— TaylorPoly Grad 1
_4 - —— TaylorPoly Grad 2
—— TaylorPoly Grad 9
=1 e In(x)
T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Die Taylorentwicklung kann zu einer Laurententwicklung verallgemeinert werden. Dann kann man

14




auch oo als Entwicklungspunkt nehmen, oder Funktionen mit Singularitéten entwickeln (mehr dazu
in Funktiontheorie).

[92]: series(atan(x), x, oo, 5)

— =+ =40
33 x-+ 2-+

[92]1: 1 1 (1

[93]: L = {}
for n in [4, 6, 10]:
L[n] = series(atan(x), x, oo, n + 1).remove0()
L

P — =+ —, 62 10: - ——4—— =+

[931:{47r 11 T 1 1 1 T 1 1 1 1 1}
2 x 323 2 x  3x3 5zd’ 2 x 3x3 bxd T 929

[94]: xn = np.linspace(l, 10, 100)
fig, ax = plt.subplots()
for n in L:
ax.plot(xn, lambdify(x, L[n]) (xn), label=f'"Grad" {n}')

ax.plot(xn, np.arctan(xn), label='arctan(x)')
plt.legend(loc=4) ;

1.4 4
1.2 A
107 — "Grad" 4
"Grad" &
0.8 - —— "Grad" 10
—— arctan(x)
T T T T T
2 4 6 a8 10

Beispiel Rationale Approximation Wir suchen eine rationale Approximation an die Wurzel-
funktion, so, dass jeweils der Anfang der Taylorreihe tibereinstimmt.

[95]: a = symbols('a:4")
X = symbols('X')
a

[95]:

15



(a0= Qayp, Qg a3)

[96]: |r = (a[0] + a[2] * X) / (1 + a[1] * X + a[3] * Xxx2)
tr = r.series(X, 0, 4).remove0()
tr

[96] :
)(S(ao(——a?4—2a1a3)%—ag(a%——a3))4—)(2(a0(a%——a3)——a1a2)4—}((——a0a14—a2)4—a0

[97]: £ = (1 + X)**Rational(l, 2)
tf = f.series(X, 0, 4).remove0()
tf

[97] : X3 X2 X

[98]:  # Gesucht sind a0, al, a2 und a3 so, dass tf und tr ubereinstimmen
sol = solve(Eq(tr, tf), a)
sol

[98]: 1 5 1
{aoz]., alzg, GQ:E, ag:_ﬂ}

[99]: plot(f, r.subs(sol), tf, (X, -1, 3), legend=True);

|
— sqri(X + 1)

— (5%X[6 + 1)/(-X**2/24 + X/3 + 1)
— X#F3f16 - X208 + Xf2 + 1

2.0 1

1.5+

fix)

1.6 Was ist eine series?
Wenn f eine Taylorreihe in dem Punkt hat, dann der Anfang der Taylorreihe.
[100]: cos(x) .series(x, 1, 9)

[100] :

16



(z—1)%cos(1) (z—1)°sin(1) (z—1)*cos(1) (z—1)"sin(1)

cos(l) — (z—1)sin(1) — 5 + c + 51 - 50 —
(x — 1)6 cos(l) (z— 1)7 sin(1) (z— 1)8 cos (1) 9
720 t s T asm  TO@-De—1)

Wenn f eine Laurentreihe mit endlichem Nebenteil in co hat, dann der Anfang des Haupteils. (mehr
dazu in Funktionenentheorie)

Eine unendliche Reihe der Form

oo

Z n(z—29)" Za (z —2p) —i—Zan —25)""

n=—0oo

heilt Laurentreihe mit Entwicklungspunkt z,, und die Reihen

—-n
E a, (z — zy)"™ bzw. E a_,(z—zy)

heilen der Nebenteil bzw. der Hauptteil der Laurentreihe. Eine Laurentreihe konvergiert im Punkt
z € C, wenn sowohl Haupt- als auch Nebenteil konvergieren.

[101]: g = (x**2 + 2 * x + 1)**2 / (x**2 + 2 * x - 1)
g.series(x, 00)

[101]: 48 20 8 4 1
e X xT

Sonst ist ‘series’ kein mathematisch sinnvoller Begriff

[102]: h = exp(x) * g
h
1021 :
1102] (;U2+2:L‘+1)26w
x2+2r—1

[103]: exp(x).series(x, 00)

[103]:

ex

[104]: h.series(x, 00)

[104]: 48e™  20e® 8e” | 4 ’
- (; %—i+i+3e + 2xe® +x26x+0(6 x—>oo>
x x
[1056]: j = exp(x) * exp(l / x)
]
[105]:6%63B

[106]: j.series(x, o00)

[106]: e P e® e® e o R
—_— —— —_— —z—
200 Vo T o T T < » & OO)

17



[107]:

[107]:

[108] :

[108]:

[109]:

[109]:

[110]:

[110]:

[111]:

[111]:

J
J

e

jl.series(x, o0o)

e

J

(x24—2x—%1)2e%em

J,‘+;

T+

1 =exp(x + 1/ %)

1

1

1
x

*g

22422 —1

(j*g) .series(x, o0o0)

17531e”

10183e*

409¢*

47e”

560>

7200t 12023

(j1*g) .series(x, 00)

4867+ %

206+ %

+ 82

46I+;

xrd

+

X

4

xr2

+ 3ze® + 22 + O

_‘_361‘4*% +2flf€x+% +$26x+% +O (6

18

e

€T

26

;x-—}oo)
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