lektionl4 i

January 28, 2026

Table of Contents

1 Extrema unter Nebenbedingungen

1.1 Notwendige Bedingungen erster Ordnung (vgl. Analysis 2)
1.2 Beispiel (n=2, m=1)

1.3 Notwendige Bedingungen zweiter Ordnung

1.4 Hinreichende Bedingungen zweiter Ordnung

1.5 Beispiel (n=3, m=2)

[1]: | import numpy as np
import matplotlib.pyplot as plt
from sympy import *
init_printing()
#/matplotlib qt
Jmatplotlib inline
plt.rcParams['figure.figsize']l = (5, 3)

1 Lektion 14

1.1 Extrema unter Nebenbedingungen

Problemstellung
Wir wollen fiir hinreichend oft differenzierbare reellwertige Funktionen f : R" — Rund g; : R" — R,
j=1,...,m, das Minimierungsproblem
min f(x) sd. g;(r)=0firj=1,..,m () (1)
xT
16sen.
Definition
r* ist eine lokale Losung von (%), falls g;(z*) = 0 fiir j = 1,...,m und, falls es € > 0 gibt, mit

f(z*) < f(z) firalle z mit |z —2*| <e und g;(x) =0, j=1,..,m.

[2]:

[3]:

1.1.1 Notwendige Bedingungen erster Ordnung (vgl. Analysis 2)
Definition (Lagrangefunktion) Fur p = (uq, ..., i,,) € R™ ist die Lagrangefunktion zu (x):

L(z, 1) = f(z) — Zuﬂm

(Unser Lagrangemultiplikatoren heiflen p weil es lambda in Python schon gibt.)

In der Analysis 2 wird folgender Satz bewiesen:

Satz (Notwendige Bedingungen erster Ordnung)

Ist " eine lokale Lésung von (x) und ist die Menge {V,g;(z*),j = 1,...,m} linear unabhingig,

dann gibt es pj € R, j=1...,m so, dass

vV, L(x*, 1*) = 0, (2)
g;(z*) =0, ¥Vj=1,..,m. (3)

dquivalente kompakte Formulierung
VL(x*, p*) =0

1.1.2 Beispiel (n=2, m=1)

x = symbols('x:2', real=True)
mu = symbols('mu:1', real=True) # Fur den Fall m=1 ginge das einfacher.

f = x[0] + x[1]

g = Matrix(1, 1, [x[0]*x4 + x[1]**4 - 1])

fn = lambdify(x, f)

gn = lambdify(x, g)

x0, x1 = np.linspace(-1.3, 1.3, 100), np.linspace(-1.3, 1.3, 100)
X0, X1 = np.meshgrid(x0, x1)

fig, ax = plt.subplots()

pf = ax.contour(X0, X1, fn(X0, X1), np.linspace(-2, 2, 5))
plt.clabel(pf)

ax.set_aspect('equal')

[4]:

[5]:

[5]:

[6]:

[71:

1.0~

0.5 7

_D.S -

W\

RN

D_
(=]

pg = ax.contour(X0, X1, gn(X0, X1)[0,0,:,:]1, [0], colors ='blue')

grad_g =

grad_f

g.jacobian(x).T
Matrix([£f]).jacobian(x).T

grad_g, grad_f

4x8
4w?

grad_gn
grad_fn
fig, ax
pg = ax.
ax
GF
ax

ax

||

)

lambdify(x, grad_g)
lambdify(x, grad_f)

plt.subplots()

contour (X0, X1, gn(X0, X1)[0, O, :, :]1, O, colors='blue')
.contour (X0, X1, fn(X0, X1), np.arange(-2, 3))

= grad_fn(X0[::10, ::10], X1[::10, ::101)

.quiver(X0[::10, ::10], X1[::10,
.set_aspect('equal')

::10], GF[0], GF[1], angles='xy', scale=20)

104 S S A ST S
L s S A d
&5_/’ S S A AN\
/ S A
0.0 - s VAV
d v S S|~
—054 / s vl
7 s e

1.0+

Vd S S S S S

[8]: # 305 Punkte auf der g(z)=0 Linte
pg-allsegs[1] [0] . shape

8]:
el (305, 2)
[9]: # Punkte auf der g(z)=0 Linie

SG = np.array(pg.allsegs[1] [0])

np.allclose(SG[:,0]**4 + SG[:,1]**4, 1, atol=le-3, rtol=1e-3)

[9]: True

[10]: fig = plt.figure()
ax = fig.gca()
pg = ax.contour (X0, X1, gn(X0, X1)[0, 0, :, :], O, colors='blue')
ax.contour (X0, X1, fn(X0, X1), [-2, -1, 0, 1, 2]1)
GG = grad_gn(SG[::8, 0], SG[::8, 11)
ax.quiver(SG[::8, 0], SG[::8, 11, GG[0], GG[1],
angles='xy', scale=50, color='blue')
ax.set_aspect('equal')

1.0~

0.5 7

0.0

—0.5

EPZRR

—1.0

I
=
o
= o

[11]: # Gradient der Lagrangefunktion bzgl. x
GxL = grad_f - mul[0] * grad_g
hier steht eigentlich das Skalarprodukt von mu und grad_g
GxL

—4pgx? + 1

[12]: # Notwendige Bedingungen erster Ordnung
eqn = [Eq(_, 0) for _ in GxL]
eqn.append (Eq(g[0], 0))
eqn

12]:

2] [—4pord +1=0, —4pgz? +1=0, 2§ + 21 —1=0]

[13]: M = nonlinsolve(eqn, (*x, *mu))

Mr = [1 for 1 in M
if all(1_.is_real for 1_ in 1)] #hier suchen wir die reellen Lésungen
Mr

Hal 2i 2% 2% 27 2% 23
27 20 4) 2720 4

[14]: # Alternative zum raussuchen der reellen Lisungen
Mr = []
for sol in M:
if (im(sol[0]) == 0) & (im(sol[1]) == 0) & (im(sol[2]) == 0):
Mr . append (sol)

Y

Mr
[14] :

[15]:

[15]:

[16]:

[16]:

[17]:

[17]:

[18]:
[18]:

Y

21 21 21 21 21
a0 _77 _Z) 77 ?7 Z

solve(eqn, (*x, *mu)) # solve respektiert dass z und mu reelle Symbole sind

2i 23 923 23 27
5 0 _77 _Z) 77) Z

Notwendige Bedingungen erster Ordnung kompakte Formulierung
L =f - (mu[0] * g[:, 0])[0]
GL = Matrix([L]).jacobian((*x, *mu))

=
-

[\]
N" NS

eqn = [Eq(_, 0) for _ in GL]
eqn

[—4pgzd +1=0, —4pea? +1=0, —z5 —z{ +1=0]

M = solve(eqn)

i 21 2
0‘_77$1‘_7) Mo‘zaxo’7ym1:?

[gl0] .subs(_) for _ in M] # Probe

=

Mw
[\)
e
[\)
IN]

NS
[\V]

NS

—

[

[0, 0]

In der Optimierung werden folgende Sétze bewiesen:

1.1.3 Notwendige Bedingungen zweiter Ordnung
Satz (Zweite Ordnung notwendige Bedingungen)

Ist " eine lokale Lésung von () und ist die Menge {V,g;(z*),j = 1,...,m} linear unabhéingig,
dann gilt

$TV o L(x*, 1*)s >0 Vse{seR": TV, g;(x*) =0, Vj=1,...,m}.

1.1.4 Hinreichende Bedingungen zweiter Ordnung
Satz (Zweite Ordnung hinreichende Bedingungen)

Gibt es fiir z* mit $g_j(x™*) =0 § fiir j = 1,...,m Lagrangemultiplikatoren x; € R, j = 1, m so,
dass V,£(x*, u*) = 0 und ist

TV, L(z*,u*)s >0, Vse{s: STngj(aj*) =0Vj=1,..,m,s # 0},

so ist x* eine lokale Losung von (x).

[19]: H = hessian(L, x)

[20]: H.subs(M[0]) # diese Matriz ist positiv definit (das sieht man)
[20] : 393 0
0 3V2

Also haben wir hier ein Minimum (Achtung: Fiir das Minimum wiirde es schon reichen, dass nur
ein Teil der Hessematrix positiv definit ist, siehe obiger Satz)

Wir berechnen eine Basis von span{s : s"V,g;(z*) =0 Vj=1,...,m}

[21]: Dbkgg = g.jacobian(x).subs(M[0]) .nullspace()
P = bkggl0] # und bilden eine Matrixz aus diesen Basisvektoren
P.T*H.subs(M[0])*P # laut obigem Satz muss nur diese Matriz posistiv definit,

“sein

21]: 4
[21] [6wﬁﬂ
[22]: | xx0 = float(M[0] [x[0]1])

xx1 = float(M[0] [x[1]11)
[23]: fig = plt.figure()

ax = fig.gca()

pg = ax.contour(X0, X1, gn(X0, X1)[0, 0], O, colors='blue')

ax.contour (X0, X1, fn(X0, X1), [-2, -1, 0, 1, 2])

GG = grad_gn(SG[::8, 0], SG[::8, 11)
ax.quiver(SG[::8, 0], SG[::8, 11, GG[0], GG[1],\
angles='xy', scale=50, color='blue')

GF = grad_fn(SG[::8, 0], SG[::8, 11)
ax.quiver(SG[::8, 0], SG[::8, 11, GF[0], GF[1],\
angles='xy', scale=10, color='orange')

ax.quiver(xx0, xx1, grad_gn(xx0, xx1)[0], grad_gn(xx0, xx1)[1],\
angles='xy', scale=50, color='cyan')

ax.quiver(xx0, xx1, grad_fn(xx0, xx1)[0], grad_fn(xx0, xx1)[1],\
angles='xy', scale=10, color='red')

ax.set_aspect('equal')
ax.annotate('Lésung', (xx0, xx1), (xx0+.5, xx1+.3),\
arrowprops={'arrowstyle':'->'}, fontsize=14);

1.0 hJ
0.5 -
0.0 -
-0.5 1 Losun

_l.D -

1.1.5 Beispiel (n=3, m=2)

[24]: x = symbols('x:3', real=True)
mu = symbols('mu:2', real=True)

f = x[0]*x[1]*x[2]

g = Matrix(2, 1, [x[0]*x2 + x[2]**2 - 1, \
2%x [0]**2 + x[1]**2 - 2])

fn = lambdify(x, f)

gn = lambdify(x, g)

f, g

[24]: 3:% + x% —1
e 427572

[25]: L = Matrix([f]) - Matrix(l, 2, [*mu]) * g
GL = Matrix([L]).jacobian((*x, *mu))

eqn = [Eq(_, 0) for _ in GL]
eqn
[25]: 2 2 2 2
[_QIU’U'TO —_— 4,[,111550 + .731562 - 0, _2H1I1 + 1‘0372 - 0, —2,[1,05[,‘2 + .730561 = 0, _xo - x2 + 1 = 07 _2$0 —_— .’El + 2 = 0]

[26]: sols = solve(eqn)
sols
[26] :
{po s —2p1, mo: =1, @, : 0, 2y : 0}, {pg s —2py, o =1, @y 20, 2y : 0F, {pg: —2py, w1, 2 :0, 25: 0},

[27]: for i in range(4):
sols[i] |= {mu[1]:1}
sols

[27]:
{MO ; _2:U’17 Myt L, Lo * —1, Ty + 0, Lo+ 0}7 {MO ; _2/1'17 Myt L, Lo * —1, L1 = 0, Lo+ 0}7 {MO : _2:u17 Myt L, Lo

[28]: from skimage import measure

xn = np.linspace(-2, 2, 51)

dx = xn[1] - xn[0]

X = np.meshgrid(xn, xn, xn)

GO = gn(*X) [0, 0]

Gl = gn(¥X) [1, 0]

pO, t0, n, v = measure.marching cubes(GO, level=0, spacing=(dx, dx, dx))
pl, tl, n, v = measure.marching_cubes(Gl, level=0, spacing=(dx, dx, dx))
pO —= 2

pl =2

fig = plt.figure()

ax = fig.add_subplot (111, projection='3d")

pg0 = ax.plot_trisurf(pO[:, 1], pO[:, 0], pO[:, 2],
triangles=t0, color='orange', alpha=0.3)

pgl = ax.plot_trisurf(pi[:, 11, pil:, 0], pi[:, 21,
triangles=tl, color='purple',
alpha=0.3)

ax.set_xlabel('x_0')

ax.set_ylabel('x_1")

ax.set_zlabel('x_2')

ax.set_x1im((-2, 2))

ax.set_ylim((-2, 2))

ax.set_zlim((-2, 2))

Source - https://stackoverflow.com/a/63325673
modified

from matplotlib.colors import Normalize
import matplotlib.cm as cm

def clrs(pg, f):

nimnn

pg: a Poly3DCollection, as returned e.g. by axz.plot_trisurf
f: a single-valued function of 3 arrays: z, y, 2

reconstruct the triangles from internal data
X, ¥, 2, _ = pPg._vec

[29] :

slices = pg._segslices

triangles = np.array([np.array((x[s], y[s], z[s])).T for s in slices])
compute the barycentres for each triangle

xb, yb, zb = triangles.mean(axis=1).T

compute the function in the barycentres
return f(xb, yb, zb)

vg0 = clrs(pg0, fn)
vgl = clrs(pgl, fn)
vmin = min(min(vg0), min(vgl))
vmax = max(max(vg0), max(vgl))

usual stuff

norm = Normalize(vmin=vmin, vmax=vmax)
colors_gO = plt.get_cmap('bwr') (norm(vg0))
colors_gl = plt.get_cmap('bur') (norm(vgl))

set the face colors of the Poly3DCollection
pg0.set_fc(colors_g0)

pgl.set_fc(colors_gl)

fig.colorbar(cm.ScalarMappable (norm=norm, cmap='bwr'), ax=ax);

grad_g = g.jacobian(x)
grad_f = Matrix([f]).jacobian(x)
grad_g, grad_f

[29]: ([2% 0 2z,

Az, 2z, O }7 [xle ToLg x0x1]>

10

[30]:

[30]:

[31]:

[32]:

[32]:

[33]:

[33]:

[34]:

[35]:
[35]:

grad_gn = lambdify(x, grad_g)
grad_fn = lambdify(x, grad_f)

Gradient der Lagrangefunktion bzgl. =
GxL = grad_f + Matrix(l, 2, [*mu]) * grad_g

Notwendige Bedingungen erster Ordnung
eqn = [Eq(_, 0) for _ in GxL]
eqn.append (Eq(g[0], 0))

eqn.append (Eq(gl[1], 0))

eqn

[=}

20020 + 4p 2o + 2125 = 0, 2011 + 2Ty = 0, 20Ty + 2o, =0, 22 + 23 —1=0, 223 + 27 —2 =]

#sols = nonlinsolve(eqn, (*z, *mu))

#solsr = [sol for sol in sols

if all(l_.is_real for 1_ im sol)] # hier suchen wir die reellen Lésungen
#solsr

Alternativ:

Notwendige Bedingungen erster Ordnung kompakte Formulierung
L = Matrix([f]) + Matrix(1, 2, [*mul]) * g

GL = Matrix([L]).jacobian((*x, *mu))

eqn = [Eq(_, 0) for _ in GL]
eqn

(21070 + 41120 + 125 = 0, 2012, + Toxy = 0, 20Ty + xoxy =0, 22 + 25 —1=0, 222 + 27 — 2 = 0]

sols = solve(eqn)

sols

for i in range(4):
sols[i] |= {mu[1]:1}

sols

[{MO : _2p’1a My e 17 Ty : _17 Zy: 07 Tyt 0}7 {MO : _2:U‘1a byt 17 Ty : _L Ty 07 Tyt O}’ {MO : _2:ulv byt 1’ Zg
H = hessian(L, x)

[H.subs(sols[i]) .n() for i in range(len(sols))]

0 0 0 0 0 0 0 O 0 0 O 0 0 0 0

0 20 -1.0{(, (0 20 -1.0{(, (0 20 10|, |0 20 1.0}, |0 0.707106781186548 —1

0 —-1.0 —4.0 0 —1.0 —4.0 0 1.0 —4.0 0 1.0 —4.0 0 —1.0 —1.41421.
Wir berechnen eine Basis von span{s : s"V g;(2*) =0 Vj =1,...,m}

11

[36]: for sol in sols:
bkgg = g.jacobian(x).subs(sol) .nullspace()
P = Matrix([v.T for v in bkggl).T # und bilden eine Matriz aus diesen,
~Basisvektoren
display([ev.n() for ev in (P.T+H.subs(sol)*P).eigenvals().keys()]) # laut,
~obigem Satz muss nur diese Matriz posistiv definit sein

—4.16227766016838, 2.16227766016838]
—4.16227766016838, 2.16227766016838]
—4.16227766016838, 2.16227766016838|
—4.16227766016838, 2.16227766016838|
—1.8112913643046, 1.10418458311805]

—1.10418458311805, 1.8112913643046]

—9.79795897113271
—9.79795897113271
—9.79795897113271
—9.79795897113271
9.79795897113271

]
9.79795897113271]
]
]

]
]
]
]

9.79795897113271

[
[
[
[
[
[
[
[
[
[
[
[
[
[9.79795897113271
[37]: |TestM = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 111)

NM = TestM.nullspace()

NM, Matrix([v.T for v in NM]).T

[37]: 1571 [0 1 15 0 1
6 o] |- 6 0 -1
1], lol, o], 1 o o
0 1 0 0 1 0
0 0 1 0 0 1

[38]: xn = np.linspace(-2, 2, 51)
dx = xn[1] - xn[0]
X = np.meshgrid(xn, xn, xn)
GO = gn(*¥X) [0, 0]
Gl = gn(*¥X) [1, 0]
pO, t0, n, v = measure.marching cubes(GO, level=0, spacing=(dx, dx, dx))
pl, tl, n, v = measure.marching_cubes(Gl, level=0, spacing=(dx, dx, dx))
pO += xn[0]
pl += xn[0]

12

fig = plt.figure()

ax = fig.add_subplot(111l, projection='3d"')

pg0 = ax.plot_trisurf(pO[:, 11, pO[:, 0], pO[:, 21,
triangles=t0, color='orange', alpha=0.4)

ax.plot_trisurf(pil:, 11, pil[:, 0], p1il:, 2],
triangles=tl, color='purple', alpha=0.4)

pgl

vg0 = clrs(pg0, fn)
vgl = clrs(pgl, fn)
vmin = min(min(vg0), min(vgl))
vmax = max(max(vg0), max(vgl))

usual stuff

norm = Normalize(vmin=vmin, vmax=vmax)
colors_gO = plt.get_cmap('bwr') (norm(vg0))
colors_gl = plt.get_cmap('bwr') (norm(vgl))

set the face colors of the Poly3DCollection
pg0.set_fc(colors_g0)

pgl.set_fc(colors_gl)

ax.set_xlabel('x _0')
ax.set_ylabel('x_1")
ax.set_zlabel('x_2"')

for sol in sols:

xx = [float(sol[x_]) for x_ in x]

bkgg = g.jacobian(x).subs(sol) .nullspace()

P = Matrix([v.T for v in bkggl).T

if all(
[ev.n() > 0
for ev in (P.T * H.subs(sol) * P).eigenvals() .keys()]):
ax.scatter(*xx, c='b')

elif all(
[ev.n() < O
for ev in (P.T * H.subs(sol) * P).eigenvals() .keys()]):
ax.scatter(*xx, c='r')

else:
ax.scatter(*xx, c='k')

13

[]:

14

	Lektion 14
	Extrema unter Nebenbedingungen
	Notwendige Bedingungen erster Ordnung (vgl. Analysis 2)
	Beispiel (n=2, m=1)
	Notwendige Bedingungen zweiter Ordnung
	Hinreichende Bedingungen zweiter Ordnung
	Beispiel (n=3, m=2)

