
lektion14_i

January 28, 2026

Table of Contents

1 Extrema unter Nebenbedingungen

1.1 Notwendige Bedingungen erster Ordnung (vgl. Analysis 2)

1.2 Beispiel (n=2, m=1)

1.3 Notwendige Bedingungen zweiter Ordnung

1.4 Hinreichende Bedingungen zweiter Ordnung

1.5 Beispiel (n=3, m=2)

[1]: import numpy as np
import matplotlib.pyplot as plt
from sympy import *
init_printing()
#%matplotlib qt
%matplotlib inline
plt.rcParams['figure.figsize'] = (5, 3)

1 Lektion 14
1.1 Extrema unter Nebenbedingungen
Problemstellung

Wir wollen für hinreichend oft differenzierbare reellwertige Funktionen 𝑓 ∶ ℝ𝕟 → ℝ und 𝑔𝑗 ∶ ℝ𝕟 → ℝ,
𝑗 = 1, … , 𝑚, das Minimierungsproblem

min
𝑥

𝑓(𝑥) 𝑠.𝑑. 𝑔𝑗(𝑥) = 0 für 𝑗 = 1, … , 𝑚 (∗) (1)

lösen.

Definition

𝑥∗ ist eine lokale Lösung von (∗), falls 𝑔𝑗(𝑥∗) = 0 für 𝑗 = 1, … , 𝑚 und, falls es 𝜀 > 0 gibt, mit

𝑓(𝑥∗) ≤ 𝑓(𝑥) für alle 𝑥 mit ‖𝑥 − 𝑥∗‖ < 𝜀 und 𝑔𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑚.

1

1.1.1 Notwendige Bedingungen erster Ordnung (vgl. Analysis 2)

Definition (Lagrangefunktion) Für 𝜇 = (𝜇1, … , 𝜇𝑚) ∈ ℝ𝑚 ist die Lagrangefunktion zu (∗):

ℒ(𝑥, 𝜇) = 𝑓(𝑥) −
𝑚

∑
𝑗=1

𝜇𝑗𝑔𝑗(𝑥)

(Unser Lagrangemultiplikatoren heißen 𝜇 weil es lambda in Python schon gibt.)

In der Analysis 2 wird folgender Satz bewiesen:

Satz (Notwendige Bedingungen erster Ordnung)

Ist 𝑥∗ eine lokale Lösung von (∗) und ist die Menge {∇𝑥𝑔𝑗(𝑥∗), 𝑗 = 1, … , 𝑚} linear unabhängig,
dann gibt es 𝜇∗

𝑗 ∈ ℝ, 𝑗 = 1 … , 𝑚 so, dass

∇𝑥ℒ(𝑥∗, 𝜇∗) = 0, (2)
𝑔𝑗(𝑥∗) = 0, ∀ 𝑗 = 1, … , 𝑚. (3)

äquivalente kompakte Formulierung
∇ℒ(𝑥∗, 𝜇∗) = 0

1.1.2 Beispiel (n=2, m=1)

[2]: x = symbols('x:2', real=True)
mu = symbols('mu:1', real=True) # Für den Fall m=1 ginge das einfacher.

f = x[0] + x[1]
g = Matrix(1, 1, [x[0]**4 + x[1]**4 - 1])

fn = lambdify(x, f)
gn = lambdify(x, g)

[3]: x0, x1 = np.linspace(-1.3, 1.3, 100), np.linspace(-1.3, 1.3, 100)
X0, X1 = np.meshgrid(x0, x1)
fig, ax = plt.subplots()
pf = ax.contour(X0, X1, fn(X0, X1), np.linspace(-2, 2, 5))
plt.clabel(pf)
ax.set_aspect('equal')

2

[4]: pg = ax.contour(X0, X1, gn(X0, X1)[0,0,:,:], [0], colors ='blue')

[5]: grad_g = g.jacobian(x).T
grad_f = Matrix([f]).jacobian(x).T
grad_g, grad_f

[5]:
([4𝑥3

0
4𝑥3

1
] , [1

1])

[6]: grad_gn = lambdify(x, grad_g)
grad_fn = lambdify(x, grad_f)

[7]: fig, ax = plt.subplots()
pg = ax.contour(X0, X1, gn(X0, X1)[0, 0, :, :], 0, colors='blue')
ax.contour(X0, X1, fn(X0, X1), np.arange(-2, 3))
GF = grad_fn(X0[::10, ::10], X1[::10, ::10])
ax.quiver(X0[::10, ::10], X1[::10, ::10], GF[0], GF[1], angles='xy', scale=20)
ax.set_aspect('equal')

3

[8]: # 305 Punkte auf der g(x)=0 Linie
pg.allsegs[1][0].shape

[8]: (305, 2)

[9]: # Punkte auf der g(x)=0 Linie
SG = np.array(pg.allsegs[1][0])
np.allclose(SG[:,0]**4 + SG[:,1]**4, 1, atol=1e-3, rtol=1e-3)

[9]: True

[10]: fig = plt.figure()
ax = fig.gca()
pg = ax.contour(X0, X1, gn(X0, X1)[0, 0, :, :], 0, colors='blue')
ax.contour(X0, X1, fn(X0, X1), [-2, -1, 0, 1, 2])
GG = grad_gn(SG[::8, 0], SG[::8, 1])
ax.quiver(SG[::8, 0], SG[::8, 1], GG[0], GG[1],

angles='xy', scale=50, color='blue')
ax.set_aspect('equal')

4

[11]: # Gradient der Lagrangefunktion bzgl. x
GxL = grad_f - mu[0] * grad_g
hier steht eigentlich das Skalarprodukt von mu und grad_g
GxL

[11]:
[−4𝜇0𝑥3

0 + 1
−4𝜇0𝑥3

1 + 1]

[12]: # Notwendige Bedingungen erster Ordnung
eqn = [Eq(_, 0) for _ in GxL]
eqn.append(Eq(g[0], 0))
eqn

[12]: [−4𝜇0𝑥3
0 + 1 = 0, −4𝜇0𝑥3

1 + 1 = 0, 𝑥4
0 + 𝑥4

1 − 1 = 0]

[13]: M = nonlinsolve(eqn, (*x, *mu))
Mr = [l for l in M

if all(l_.is_real for l_ in l)] #hier suchen wir die reellen Lösungen
Mr

[13]:
[(−2 3

4

2 , −2 3
4

2 , −2 3
4

4) , (2 3
4

2 , 2 3
4

2 , 2 3
4

4)]

[14]: # Alternative zum raussuchen der reellen Lösungen
Mr = []
for sol in M:

if (im(sol[0]) == 0) & (im(sol[1]) == 0) & (im(sol[2]) == 0):
Mr.append(sol)

Mr
[14]:

5

[(−2 3
4

2 , −2 3
4

2 , −2 3
4

4) , (2 3
4

2 , 2 3
4

2 , 2 3
4

4)]

[15]: M = solve(eqn, (*x, *mu)) # solve respektiert dass x und mu reelle Symbole sind
M

[15]:
[(−2 3

4

2 , −2 3
4

2 , −2 3
4

4) , (2 3
4

2 , 2 3
4

2 , 2 3
4

4)]

[16]: # Notwendige Bedingungen erster Ordnung kompakte Formulierung
L = f - (mu[0] * g[:, 0])[0]
GL = Matrix([L]).jacobian((*x, *mu))

eqn = [Eq(_, 0) for _ in GL]
eqn

[16]: [−4𝜇0𝑥3
0 + 1 = 0, −4𝜇0𝑥3

1 + 1 = 0, −𝑥4
0 − 𝑥4

1 + 1 = 0]

[17]: M = solve(eqn)
M

[17]:
[{𝜇0 ∶ −2 3

4

4 , 𝑥0 ∶ −2 3
4

2 , 𝑥1 ∶ −2 3
4

2 } , {𝜇0 ∶ 2 3
4

4 , 𝑥0 ∶ 2 3
4

2 , 𝑥1 ∶ 2 3
4

2 }]

[18]: [g[0].subs(_) for _ in M] # Probe
[18]: [0, 0]

In der Optimierung werden folgende Sätze bewiesen:

1.1.3 Notwendige Bedingungen zweiter Ordnung

Satz (Zweite Ordnung notwendige Bedingungen)

Ist 𝑥∗ eine lokale Lösung von (∗) und ist die Menge {∇𝑥𝑔𝑗(𝑥∗), 𝑗 = 1, … , 𝑚} linear unabhängig,
dann gilt

𝑠𝑇 ∇𝑥𝑥ℒ(𝑥∗, 𝜇∗)𝑠 ≥ 0 ∀𝑠 ∈ {𝑠 ∈ ℝ𝑛 ∶ 𝑠𝑇 ∇𝑥𝑔𝑗(𝑥∗) = 0, ∀𝑗 = 1, … , 𝑚}.

1.1.4 Hinreichende Bedingungen zweiter Ordnung

Satz (Zweite Ordnung hinreichende Bedingungen)

Gibt es für 𝑥∗ mit $g_j(x^*) =0 $ für 𝑗 = 1, … , 𝑚 Lagrangemultiplikatoren 𝜇∗
𝑗 ∈ ℝ, 𝑗 = 1, ̇,𝑚 so,

dass ∇𝑥ℒ(𝑥∗, 𝜇∗) = 0 und ist

𝑠𝑇 ∇𝑥𝑥ℒ(𝑥∗, 𝜇∗)𝑠 > 0, ∀𝑠 ∈ {𝑠 ∶ 𝑠𝑇 ∇𝑥𝑔𝑗(𝑥∗) = 0 ∀𝑗 = 1, … , 𝑚, 𝑠 ≠ 0},

so ist 𝑥∗ eine lokale Lösung von (∗).

6

[19]: H = hessian(L, x)

[20]: H.subs(M[0]) # diese Matrix ist positiv definit (das sieht man)
[20]:

[3 4√2 0
0 3 4√2]

Also haben wir hier ein Minimum (Achtung: Für das Minimum würde es schon reichen, dass nur
ein Teil der Hessematrix positiv definit ist, siehe obiger Satz)

Wir berechnen eine Basis von 𝑠𝑝𝑎𝑛{𝑠 ∶ 𝑠𝑇 ∇𝑥𝑔𝑗(𝑥∗) = 0 ∀𝑗 = 1, … , 𝑚}

[21]: bkgg = g.jacobian(x).subs(M[0]).nullspace()
P = bkgg[0] # und bilden eine Matrix aus diesen Basisvektoren
P.T*H.subs(M[0])*P # laut obigem Satz muss nur diese Matrix posistiv definit␣

↪sein
[21]: [6 4√2]

[22]: xx0 = float(M[0][x[0]])
xx1 = float(M[0][x[1]])

[23]: fig = plt.figure()
ax = fig.gca()
pg = ax.contour(X0, X1, gn(X0, X1)[0, 0], 0, colors='blue')

ax.contour(X0, X1, fn(X0, X1), [-2, -1, 0, 1, 2])

GG = grad_gn(SG[::8, 0], SG[::8, 1])
ax.quiver(SG[::8, 0], SG[::8, 1], GG[0], GG[1],\

angles='xy', scale=50, color='blue')

GF = grad_fn(SG[::8, 0], SG[::8, 1])
ax.quiver(SG[::8, 0], SG[::8, 1], GF[0], GF[1],\

angles='xy', scale=10, color='orange')

ax.quiver(xx0, xx1, grad_gn(xx0, xx1)[0], grad_gn(xx0, xx1)[1],\
angles='xy', scale=50, color='cyan')

ax.quiver(xx0, xx1, grad_fn(xx0, xx1)[0], grad_fn(xx0, xx1)[1],\
angles='xy', scale=10, color='red')

ax.set_aspect('equal')
ax.annotate('Lösung', (xx0, xx1), (xx0+.5, xx1+.3),\

arrowprops={'arrowstyle':'->'}, fontsize=14);

7

1.1.5 Beispiel (n=3, m=2)

[24]: x = symbols('x:3', real=True)
mu = symbols('mu:2', real=True)

f = x[0]*x[1]*x[2]
g = Matrix(2, 1, [x[0]**2 + x[2]**2 - 1, \

2*x[0]**2 + x[1]**2 - 2])

fn = lambdify(x, f)
gn = lambdify(x, g)
f, g

[24]:
(𝑥0𝑥1𝑥2, [𝑥2

0 + 𝑥2
2 − 1

2𝑥2
0 + 𝑥2

1 − 2])

[25]: L = Matrix([f]) - Matrix(1, 2, [*mu]) * g
GL = Matrix([L]).jacobian((*x, *mu))

eqn = [Eq(_, 0) for _ in GL]
eqn

[25]: [−2𝜇0𝑥0 − 4𝜇1𝑥0 + 𝑥1𝑥2 = 0, −2𝜇1𝑥1 + 𝑥0𝑥2 = 0, −2𝜇0𝑥2 + 𝑥0𝑥1 = 0, −𝑥2
0 − 𝑥2

2 + 1 = 0, −2𝑥2
0 − 𝑥2

1 + 2 = 0]

[26]: sols = solve(eqn)
sols

[26]:
[{𝜇0 ∶ −2𝜇1, 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −

√
2

2 , 𝜇1 ∶
√

2
4 , 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶

√
2

2 , 𝜇1 ∶ −
√

2
4 , 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −

√
6

6 , 𝜇1 ∶ −
√

6
12 , 𝑥0 ∶ −

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶ −

√
6

3 } , {𝜇0 ∶ −
√

6
6 , 𝜇1 ∶ −

√
6

12 , 𝑥0 ∶ −
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶
√

6
3 } , {𝜇0 ∶ −

√
6

6 , 𝜇1 ∶ −
√

6
12 , 𝑥0 ∶

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶

√
6

3 } , {𝜇0 ∶ −
√

6
6 , 𝜇1 ∶ −

√
6

12 , 𝑥0 ∶
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶ −
√

6
3 } , {𝜇0 ∶

√
6

6 , 𝜇1 ∶
√

6
12 , 𝑥0 ∶ −

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶

√
6

3 } , {𝜇0 ∶
√

6
6 , 𝜇1 ∶

√
6

12 , 𝑥0 ∶ −
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶ −
√

6
3 } , {𝜇0 ∶

√
6

6 , 𝜇1 ∶
√

6
12 , 𝑥0 ∶

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶ −

√
6

3 } , {𝜇0 ∶
√

6
6 , 𝜇1 ∶

√
6

12 , 𝑥0 ∶
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶
√

6
3 }]

8

[27]: for i in range(4):
sols[i] |= {mu[1]:1}

sols
[27]:

[{𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −
√

2
2 , 𝜇1 ∶

√
2

4 , 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶
√

2
2 , 𝜇1 ∶ −

√
2

4 , 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −
√

6
6 , 𝜇1 ∶ −

√
6

12 , 𝑥0 ∶ −
√

3
3 , 𝑥1 ∶ −2

√
3

3 , 𝑥2 ∶ −
√

6
3 } , {𝜇0 ∶ −

√
6

6 , 𝜇1 ∶ −
√

6
12 , 𝑥0 ∶ −

√
3

3 , 𝑥1 ∶ 2
√

3
3 , 𝑥2 ∶

√
6

3 } , {𝜇0 ∶ −
√

6
6 , 𝜇1 ∶ −

√
6

12 , 𝑥0 ∶
√

3
3 , 𝑥1 ∶ −2

√
3

3 , 𝑥2 ∶
√

6
3 } , {𝜇0 ∶ −

√
6

6 , 𝜇1 ∶ −
√

6
12 , 𝑥0 ∶

√
3

3 , 𝑥1 ∶ 2
√

3
3 , 𝑥2 ∶ −

√
6

3 } , {𝜇0 ∶
√

6
6 , 𝜇1 ∶

√
6

12 , 𝑥0 ∶ −
√

3
3 , 𝑥1 ∶ −2

√
3

3 , 𝑥2 ∶
√

6
3 } , {𝜇0 ∶

√
6

6 , 𝜇1 ∶
√

6
12 , 𝑥0 ∶ −

√
3

3 , 𝑥1 ∶ 2
√

3
3 , 𝑥2 ∶ −

√
6

3 } , {𝜇0 ∶
√

6
6 , 𝜇1 ∶

√
6

12 , 𝑥0 ∶
√

3
3 , 𝑥1 ∶ −2

√
3

3 , 𝑥2 ∶ −
√

6
3 } , {𝜇0 ∶

√
6

6 , 𝜇1 ∶
√

6
12 , 𝑥0 ∶

√
3

3 , 𝑥1 ∶ 2
√

3
3 , 𝑥2 ∶

√
6

3 }]

[28]: from skimage import measure

xn = np.linspace(-2, 2, 51)
dx = xn[1] - xn[0]
X = np.meshgrid(xn, xn, xn)
G0 = gn(*X)[0, 0]
G1 = gn(*X)[1, 0]
p0, t0, n, v = measure.marching_cubes(G0, level=0, spacing=(dx, dx, dx))
p1, t1, n, v = measure.marching_cubes(G1, level=0, spacing=(dx, dx, dx))
p0 -= 2
p1 -= 2

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
pg0 = ax.plot_trisurf(p0[:, 1], p0[:, 0], p0[:, 2],

triangles=t0, color='orange', alpha=0.3)
pg1 = ax.plot_trisurf(p1[:, 1], p1[:, 0], p1[:, 2],

triangles=t1, color='purple',
alpha=0.3)

ax.set_xlabel('x_0')
ax.set_ylabel('x_1')
ax.set_zlabel('x_2')
ax.set_xlim((-2, 2))
ax.set_ylim((-2, 2))
ax.set_zlim((-2, 2))

Source - https://stackoverflow.com/a/63325673
modified

from matplotlib.colors import Normalize
import matplotlib.cm as cm

def clrs(pg, f):
"""
pg: a Poly3DCollection, as returned e.g. by ax.plot_trisurf
f: a single-valued function of 3 arrays: x, y, z
"""
reconstruct the triangles from internal data
x, y, z, _ = pg._vec

9

slices = pg._segslices
triangles = np.array([np.array((x[s], y[s], z[s])).T for s in slices])
compute the barycentres for each triangle
xb, yb, zb = triangles.mean(axis=1).T

compute the function in the barycentres
return f(xb, yb, zb)

vg0 = clrs(pg0, fn)
vg1 = clrs(pg1, fn)
vmin = min(min(vg0), min(vg1))
vmax = max(max(vg0), max(vg1))

usual stuff
norm = Normalize(vmin=vmin, vmax=vmax)
colors_g0 = plt.get_cmap('bwr')(norm(vg0))
colors_g1 = plt.get_cmap('bwr')(norm(vg1))
set the face colors of the Poly3DCollection
pg0.set_fc(colors_g0)
pg1.set_fc(colors_g1)
fig.colorbar(cm.ScalarMappable(norm=norm, cmap='bwr'), ax=ax);

[29]: grad_g = g.jacobian(x)
grad_f = Matrix([f]).jacobian(x)
grad_g, grad_f

[29]:
([2𝑥0 0 2𝑥2

4𝑥0 2𝑥1 0] , [𝑥1𝑥2 𝑥0𝑥2 𝑥0𝑥1])

10

[30]: grad_gn = lambdify(x, grad_g)
grad_fn = lambdify(x, grad_f)

Gradient der Lagrangefunktion bzgl. x
GxL = grad_f + Matrix(1, 2, [*mu]) * grad_g

Notwendige Bedingungen erster Ordnung
eqn = [Eq(_, 0) for _ in GxL]
eqn.append(Eq(g[0], 0))
eqn.append(Eq(g[1], 0))
eqn

[30]: [2𝜇0𝑥0 + 4𝜇1𝑥0 + 𝑥1𝑥2 = 0, 2𝜇1𝑥1 + 𝑥0𝑥2 = 0, 2𝜇0𝑥2 + 𝑥0𝑥1 = 0, 𝑥2
0 + 𝑥2

2 − 1 = 0, 2𝑥2
0 + 𝑥2

1 − 2 = 0]

[31]: #sols = nonlinsolve(eqn, (*x, *mu))
#solsr = [sol for sol in sols
if all(l_.is_real for l_ in sol)] # hier suchen wir die reellen Lösungen
#solsr

[32]: # Alternativ:
Notwendige Bedingungen erster Ordnung kompakte Formulierung
L = Matrix([f]) + Matrix(1, 2, [*mu]) * g
GL = Matrix([L]).jacobian((*x, *mu))

eqn = [Eq(_, 0) for _ in GL]
eqn

[32]: [2𝜇0𝑥0 + 4𝜇1𝑥0 + 𝑥1𝑥2 = 0, 2𝜇1𝑥1 + 𝑥0𝑥2 = 0, 2𝜇0𝑥2 + 𝑥0𝑥1 = 0, 𝑥2
0 + 𝑥2

2 − 1 = 0, 2𝑥2
0 + 𝑥2

1 − 2 = 0]

[33]: sols = solve(eqn)
sols
for i in range(4):

sols[i] |= {mu[1]:1}
sols

[33]:
[{𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −2𝜇1, 𝜇1 ∶ 1, 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −

√
2

2 , 𝜇1 ∶
√

2
4 , 𝑥0 ∶ −1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶

√
2

2 , 𝜇1 ∶ −
√

2
4 , 𝑥0 ∶ 1, 𝑥1 ∶ 0, 𝑥2 ∶ 0} , {𝜇0 ∶ −

√
6

6 , 𝜇1 ∶ −
√

6
12 , 𝑥0 ∶ −

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶

√
6

3 } , {𝜇0 ∶ −
√

6
6 , 𝜇1 ∶ −

√
6

12 , 𝑥0 ∶ −
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶ −
√

6
3 } , {𝜇0 ∶ −

√
6

6 , 𝜇1 ∶ −
√

6
12 , 𝑥0 ∶

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶ −

√
6

3 } , {𝜇0 ∶ −
√

6
6 , 𝜇1 ∶ −

√
6

12 , 𝑥0 ∶
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶
√

6
3 } , {𝜇0 ∶

√
6

6 , 𝜇1 ∶
√

6
12 , 𝑥0 ∶ −

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶ −

√
6

3 } , {𝜇0 ∶
√

6
6 , 𝜇1 ∶

√
6

12 , 𝑥0 ∶ −
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶
√

6
3 } , {𝜇0 ∶

√
6

6 , 𝜇1 ∶
√

6
12 , 𝑥0 ∶

√
3

3 , 𝑥1 ∶ −2
√

3
3 , 𝑥2 ∶

√
6

3 } , {𝜇0 ∶
√

6
6 , 𝜇1 ∶

√
6

12 , 𝑥0 ∶
√

3
3 , 𝑥1 ∶ 2

√
3

3 , 𝑥2 ∶ −
√

6
3 }]

[34]: H = hessian(L, x)

[35]: [H.subs(sols[i]).n() for i in range(len(sols))]
[35]:

⎡⎢
⎣

⎡⎢
⎣

0 0 0
0 2.0 −1.0
0 −1.0 −4.0

⎤⎥
⎦

, ⎡⎢
⎣

0 0 0
0 2.0 −1.0
0 −1.0 −4.0

⎤⎥
⎦

, ⎡⎢
⎣

0 0 0
0 2.0 1.0
0 1.0 −4.0

⎤⎥
⎦

, ⎡⎢
⎣

0 0 0
0 2.0 1.0
0 1.0 −4.0

⎤⎥
⎦

, ⎡⎢
⎣

0 0 0
0 0.707106781186548 −1.0
0 −1.0 −1.4142135623731

⎤⎥
⎦

, ⎡⎢
⎣

0 0 0
0 −0.707106781186548 1.0
0 1.0 1.4142135623731

⎤⎥
⎦

, ⎡⎢
⎣

−1.63299316185545 0.816496580927726 −1.15470053837925
0.816496580927726 −0.408248290463863 −0.577350269189626
−1.15470053837925 −0.577350269189626 −0.816496580927726

⎤⎥
⎦

, ⎡⎢
⎣

−1.63299316185545 −0.816496580927726 1.15470053837925
−0.816496580927726 −0.408248290463863 −0.577350269189626

1.15470053837925 −0.577350269189626 −0.816496580927726
⎤⎥
⎦

, ⎡⎢
⎣

−1.63299316185545 −0.816496580927726 −1.15470053837925
−0.816496580927726 −0.408248290463863 0.577350269189626
−1.15470053837925 0.577350269189626 −0.816496580927726

⎤⎥
⎦

, ⎡⎢
⎣

−1.63299316185545 0.816496580927726 1.15470053837925
0.816496580927726 −0.408248290463863 0.577350269189626
1.15470053837925 0.577350269189626 −0.816496580927726

⎤⎥
⎦

, ⎡⎢
⎣

1.63299316185545 −0.816496580927726 −1.15470053837925
−0.816496580927726 0.408248290463863 −0.577350269189626
−1.15470053837925 −0.577350269189626 0.816496580927726

⎤⎥
⎦

, ⎡⎢
⎣

1.63299316185545 0.816496580927726 1.15470053837925
0.816496580927726 0.408248290463863 −0.577350269189626
1.15470053837925 −0.577350269189626 0.816496580927726

⎤⎥
⎦

, ⎡⎢
⎣

1.63299316185545 0.816496580927726 −1.15470053837925
0.816496580927726 0.408248290463863 0.577350269189626
−1.15470053837925 0.577350269189626 0.816496580927726

⎤⎥
⎦

, ⎡⎢
⎣

1.63299316185545 −0.816496580927726 1.15470053837925
−0.816496580927726 0.408248290463863 0.577350269189626

1.15470053837925 0.577350269189626 0.816496580927726
⎤⎥
⎦

⎤⎥
⎦

Wir berechnen eine Basis von 𝑠𝑝𝑎𝑛{𝑠 ∶ 𝑠𝑇 ∇𝑥𝑔𝑗(𝑥∗) = 0 ∀𝑗 = 1, … , 𝑚}

11

[36]: for sol in sols:
bkgg = g.jacobian(x).subs(sol).nullspace()
P = Matrix([v.T for v in bkgg]).T # und bilden eine Matrix aus diesen␣

↪Basisvektoren
display([ev.n() for ev in (P.T*H.subs(sol)*P).eigenvals().keys()]) # laut␣

↪obigem Satz muss nur diese Matrix posistiv definit sein

[−4.16227766016838, 2.16227766016838]
[−4.16227766016838, 2.16227766016838]
[−4.16227766016838, 2.16227766016838]
[−4.16227766016838, 2.16227766016838]
[−1.8112913643046, 1.10418458311805]
[−1.10418458311805, 1.8112913643046]
[−9.79795897113271]
[−9.79795897113271]
[−9.79795897113271]
[−9.79795897113271]
[9.79795897113271]
[9.79795897113271]
[9.79795897113271]
[9.79795897113271]

[37]: TestM = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
NM = TestM.nullspace()
NM, Matrix([v.T for v in NM]).T

[37]:
⎛⎜⎜⎜⎜⎜⎜
⎝

⎡
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

−15
6
1
0
0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

0
0
0
1
0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1
−1

2
0
0
1

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

−15 0 1
6 0 −1

2
1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟
⎠

[38]: xn = np.linspace(-2, 2, 51)
dx = xn[1] - xn[0]
X = np.meshgrid(xn, xn, xn)
G0 = gn(*X)[0, 0]
G1 = gn(*X)[1, 0]
p0, t0, n, v = measure.marching_cubes(G0, level=0, spacing=(dx, dx, dx))
p1, t1, n, v = measure.marching_cubes(G1, level=0, spacing=(dx, dx, dx))
p0 += xn[0]
p1 += xn[0]

12

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
pg0 = ax.plot_trisurf(p0[:, 1], p0[:, 0], p0[:, 2],

triangles=t0, color='orange', alpha=0.4)
pg1 = ax.plot_trisurf(p1[:, 1], p1[:, 0], p1[:, 2],

triangles=t1, color='purple', alpha=0.4)

vg0 = clrs(pg0, fn)
vg1 = clrs(pg1, fn)
vmin = min(min(vg0), min(vg1))
vmax = max(max(vg0), max(vg1))

usual stuff
norm = Normalize(vmin=vmin, vmax=vmax)
colors_g0 = plt.get_cmap('bwr')(norm(vg0))
colors_g1 = plt.get_cmap('bwr')(norm(vg1))
set the face colors of the Poly3DCollection
pg0.set_fc(colors_g0)
pg1.set_fc(colors_g1)

ax.set_xlabel('x_0')
ax.set_ylabel('x_1')
ax.set_zlabel('x_2')

for sol in sols:
xx = [float(sol[x_]) for x_ in x]
bkgg = g.jacobian(x).subs(sol).nullspace()
P = Matrix([v.T for v in bkgg]).T
if all(

[ev.n() > 0
for ev in (P.T * H.subs(sol) * P).eigenvals().keys()]):
ax.scatter(*xx, c='b')

elif all(
[ev.n() < 0
for ev in (P.T * H.subs(sol) * P).eigenvals().keys()]):
ax.scatter(*xx, c='r')

else:
ax.scatter(*xx, c='k')

13

[]:

14

	Lektion 14
	Extrema unter Nebenbedingungen
	Notwendige Bedingungen erster Ordnung (vgl. Analysis 2)
	Beispiel (n=2, m=1)
	Notwendige Bedingungen zweiter Ordnung
	Hinreichende Bedingungen zweiter Ordnung
	Beispiel (n=3, m=2)

