
lektion13_i

January 22, 2026

Inhalt

1 Logistische Gleichung (Wiederholung)

1.1 Anpassung an Anfangswert

2 Systeme von DGLen

2.1 Lineare Systeme - Matrixexponentialfunktion

2.2 Zweite Ordnung DGL

2.3 Pendelgleichung (physikalisches Pendel)

2.4 Phasenraum und Trajektorien

2.5 Zwei Massen Feder System

3 Weitere Beispiele

3.1 DGL mit endlichen maximalen Definitionsbereich

3.2 AWP mit zwei Lösungen

3.3 AWP mit unendlich vielen Lösungen

1 Lektion 13
[1]: import matplotlib.pyplot as plt

import numpy as np
from sympy import *
init_printing()
%matplotlib inline
plt.rcParams['figure.figsize'] = (5, 3)

2 Differentialgleichungen (Teil 2)
𝑦′(𝑡) = 𝑓(𝑦, 𝑡), 𝑦(𝑡0) = 𝑦0

2.1 Logistische Gleichung (Wiederholung)
einfaches Modell zur Beschreibung von Wachstum in einem Habitat mit beschränkten Resourcen

𝑦′(𝑡) = (1 − 𝑦(𝑡))𝑦(𝑡)

1

[2]: y = Function('y')
t, t0, tau, y0 = symbols('t t_0 tau y0', real=True)
yy = symbols('yy')
dgl = Eq(y(t).diff(t), (1 - y(t)) * y(t))
dgl

[2]: 𝑑
𝑑𝑡𝑦(𝑡) = (1 − 𝑦(𝑡)) 𝑦(𝑡)

[3]: sol = dsolve(dgl, y(t))
sol

[3]:
𝑦(𝑡) = 1

𝐶1𝑒−𝑡 + 1

[4]: aw = {y(t0): y0}
sol_aw = dsolve(dgl, y(t), ics=aw)
sol_aw

[4]:
𝑦(𝑡) = 1

1 + (1−𝑦0)𝑒−𝑡𝑒𝑡0
𝑦0

[5]: fig = plt.figure(1)
fig.clf()
ax = fig.gca()
tn = np.linspace(0, 5, 101)
y_ = sol_aw.rhs.subs(t0, 0).subs(y0, .25) # Anfangsbedingung y(0)= 0.1
yn = lambdify(t, y_)
ax.plot(tn, yn(tn))

[5]: [<matplotlib.lines.Line2D at 0x7f65da162600>]

2

[6]: fig = plt.figure(2)
ax = fig.gca()
tn = np.linspace(0, 5, 201)
for y_0 in [.01, .25, .5, 1.5, 2]: # mehrere Anfangsbedingungen

y_ = sol_aw.rhs.subs(t0, 0).subs(y0, y_0)
yn = lambdify(t, y_)
ax.plot(tn, yn(tn), label=f"zu y(0)= {y_0}")

ax.legend()
ax.set_title(f"Lösungen zu ${latex(dgl)}$");

[7]: f = dgl.rhs.subs(y(t), yy)
f

[7]: 𝑦𝑦 (1 − 𝑦𝑦)

[8]: fn = lambdify(yy, f)
tg = np.linspace(0, 5, 10)
yg = np.linspace(0.1, 1.9, 20)
TT, YY = np.meshgrid(tg, yg)
ax.quiver(TT, YY, np.ones_like(YY), fn(YY), angles='xy');
angles='xy' ist wichtig für korrekte Richtungen der Vektoren!

2.1.1 Anpassung an Anfangswert

[9]: sol

[9]:
𝑦(𝑡) = 1

𝐶1𝑒−𝑡 + 1

3

[10]: c1_s = S('C1')
c1_s

[10]: 𝐶1

[11]: C1 = solve(sol, c1_s)[0].subs(t, t0).replace(y(t0),y0)
C1

[11]:
−𝑒𝑡0 + 𝑒𝑡0

𝑦0

[12]: ys = sol.subs(c1_s, C1)
ys

[12]:
𝑦(𝑡) = 1

(−𝑒𝑡0 + 𝑒𝑡0
𝑦0

) 𝑒−𝑡 + 1

2.2 Systeme von DGLen
2.2.1 Lineare Systeme - Matrixexponentialfunktion

Für eine Matrix 𝑛 × 𝑛 𝐴 suchen wir eine Lösung 𝑢 ∶ [𝑡0, 𝑇] → ℝ𝑛 von

𝑢′(𝑡) = 𝐴𝑢(𝑡), 𝑢(0) = 𝑢0

[13]: t = symbols('t', real=True)

[14]: A = Matrix(3, 3, [2, 1, 0,\
0, 2, 1,\
0, 0, 2])

A

[14]:
⎡⎢
⎣

2 1 0
0 2 1
0 0 2

⎤⎥
⎦

[15]: exp(t*A)

[15]:
⎡⎢
⎣

𝑒2𝑡 𝑡𝑒2𝑡 𝑡2𝑒2𝑡
2

0 𝑒2𝑡 𝑡𝑒2𝑡

0 0 𝑒2𝑡

⎤⎥
⎦

[16]: u0 = Matrix(3, 1, [1, 2, 3]) # Anfangswert
u0

[16]:
⎡⎢
⎣

1
2
3
⎤⎥
⎦

4

[17]: u = exp(t*A)*u0
u

[17]:
⎡⎢
⎣

3𝑡2𝑒2𝑡
2 + 2𝑡𝑒2𝑡 + 𝑒2𝑡

3𝑡𝑒2𝑡 + 2𝑒2𝑡

3𝑒2𝑡

⎤⎥
⎦

[18]: u.diff(t) - A*u

[18]:
⎡⎢
⎣

0
0
0
⎤⎥
⎦

2.2.2 Zweite Ordnung DGL

Harmonischer Oszillator

$ y’ ’(t) = -y(t) $

[19]: dgl = Eq(y(t).diff(t, 2), -y(t))
dgl

[19]: 𝑑2

𝑑𝑡2 𝑦(𝑡) = −𝑦(𝑡)

[20]: dsolve(dgl, y(t))

[20]: 𝑦(𝑡) = 𝐶1 sin (𝑡) + 𝐶2 cos (𝑡)
äquivalentes System 1. Ordnung

𝑢′
1(𝑡) = 𝑢2(𝑡)

𝑢′
2(𝑡) = −𝑢1(𝑡)

in Matrixschreibweise
𝑢′(𝑡) = 𝐴𝑢(𝑡) ∶= 𝑓(𝑢(𝑡))

[21]: A = Matrix(2, 2, [0, 1, -1, 0])
A

[21]:
[0 1
−1 0]

[22]: u0 = Matrix(2, 1, [1, 0])
u0

[22]:
[1
0]

5

[23]: MexpA = lambda t: simplify((t*A).exp())
MexpA(t)

[23]:
[cos (𝑡) sin (𝑡)
− sin (𝑡) cos (𝑡)]

[24]: u = MexpA(t)*u0
un = lambdify(t,u)

[25]: def f(u):
return u[1], -u[0]

[26]: u1 = np.linspace(-2.0, 2.0, 15)
u2 = np.linspace(-2.0, 2.0, 10)
tn = np.linspace(0, 3 / 2 * np.pi)
U1, U2 = np.meshgrid(u1, u2)
U, V = f([U1, U2])

[27]: fig = plt.figure(3)
ax = fig.add_subplot(111)
ax.plot(un(tn)[0][0], un(tn)[1][0])
ax.set_title('Phasenraum')
ax.quiver(U1, U2, U, V, angles='xy', color='m')
ax.set_aspect('equal');

2.2.3 Pendelgleichung (physikalisches Pendel)

Nichtlineare Differentialgleichung 2. Ordnung:

6

𝛼″(𝑡) = − sin(𝛼(𝑡)) (𝑚 = 𝑔 = 𝑙 = 1)

äquivalent zu System 1. Ordnung

𝑦1(𝑡) ∶= 𝛼(𝑡), 𝑦2(𝑡) ∶= 𝑑
𝑑𝑡𝛼(𝑡)

𝑦′
1(𝑡) = 𝑦2(𝑡)

𝑦′
2(𝑡) = − sin(𝑦1(𝑡))

𝑦1: Winkel

𝑦2: Winkelgeschwindigkeit

[28]: dgl = Eq(y(t).diff(t, 2), -sin(y(t)))
dgl

[28]: 𝑑2

𝑑𝑡2 𝑦(𝑡) = − sin (𝑦(𝑡))

[29]: #sol = dsolve(dgl, y(t)) # das kann sympy nicht
#sol

2.2.4 Phasenraum und Trajektorien

vgl. Ana II Kurzskript Kap. 20 http://www.math.uni-
duesseldorf.de/~internet/ana2_19/vorlesung.pdf https://www.math.uni-
duesseldorf.de/~adams/static/analysis2_ws2025/analysis2_skript.pdf

[30]: def f(y, t):
y1 = y[0]
y2 = y[1]
return y2, -np.sin(y1)

[31]: y1 = np.linspace(-3.0, 3.0, 15)
y2 = np.linspace(-2.0, 2.0, 10)
Y1, Y2 = np.meshgrid(y1, y2)
t0 = 0

[32]: U, V = f([Y1, Y2], t0)

[33]: fig = plt.figure(4)
ax = fig.add_subplot(111)
ax.set_title('Phasenraum')
ax.quiver(Y1, Y2, U, V, angles='xy', color='m')
ax.set_aspect('equal')
ax.set_xlabel('y_1 Winkel')

7

ax.set_ylabel('y_2 Winkelgeschwindigkeit');

[34]: from scipy.integrate import odeint # numerische Integration (numerisches␣
↪Lösungsverfahren für DGL)

Das kommt sicher nicht in der Klausur dran!
tn = np.linspace(0, 2.5, 10)
y0 = np.array([0.0, 1]) # Anfangswert
yn = odeint(f, y0, tn) #berechnet Näherungslösung y für jeden Wert in tn
yn

[34]: array([[0. , 1.],
[0.27423279, 0.96190773],
[0.52781962, 0.85312045],
[0.74293751, 0.68772761],
[0.90626302, 0.48309797],
[1.0091793 , 0.25516877],
[1.04703987, 0.01652653],
[1.01830076, -0.22276961],
[0.92412561, -0.45284143],
[0.76868903, -0.66154768]])

[35]: fig = plt.figure(5)

ax1 = fig.add_subplot(121)
ax1.quiver(Y1, Y2, U, V, angles='xy', color='k')
ax1.set_aspect('equal');
ax1.set_xlabel('y_1');

8

ax1.set_ylabel('y_2');
ax1.set_title('Phasenraum')

ax2 = fig.add_subplot(122)
ax2.set_title('Trajektorien')

tn = np.linspace(0, 11, 100)
for y20 in np.linspace(0.3, 1.9, 4):

y0 = [0.0, y20]

yn = odeint(f, y0, tn)

line, = ax1.plot(yn[:,0], yn[:,1], '-') # Phasenporträt (Lösung im␣
↪Phasenraum)

ax1.plot(yn[0,0], yn[0,1], 'o', color=line.get_color(), markersize=10) #␣
↪Startwert

ax1.plot(yn[-1,0], yn[-1,1], 'd', color=line.get_color(), markersize=10) #␣
↪Wert zum Endzeitpunkt

ax2.plot(tn, yn[:,0], '--', color=line.get_color()) # y_1
ax2.plot(tn, yn[:,1], ':', color=line.get_color()) # y_2
ax2.set_xlabel('t')
ax2.set_ylabel('y_1, y_2')

[36]: y0 = [0.0, .4]
yn = odeint(f, y0, tn)

9

fig = plt.figure(6)
ax = fig.add_subplot(111, projection='3d')
ax.plot3D(tn, yn[:, 0], yn[:, 1])
ax.set_xlabel('t')
ax.set_ylabel('y_1')
ax.set_zlabel('y_2')
ax.set_title('Trajektorie');

[37]: ax.view_init(0, 0)
ax.set_proj_type('ortho') # focal_lenght = oo, FOV = 0 deg
#ax.set_proj_type('persp') # focal_lenght 1 ,FOV = 90 deg
#ax.set_proj_type('persp', focal_length=0.2) # FOV = 157.4 deg
plt.show()

[38]: ax.view_init(0, 90)
plt.show()

[39]: ax.view_init(90,-90)
plt.show()

falls der Winkel klein ist, ist
sin(𝛼) ≈ 𝛼

und wir erhalten als Approximation den harmonischen Oszillator

𝑢′
1(𝑡) = 𝑢2(𝑡) (1)

𝑢′
2(𝑡) = −𝑢1(𝑡) (2)

10

[40]: dgl3 = Eq(y(t).diff(t, 2), -y(t))
awe = {y(0): y0[0], y(t).diff(t).subs(t, 0): y0[1]}
sol3 = dsolve(dgl3, y(t), ics=awe)

[41]: fig = plt.figure(7)
ax = fig.add_subplot(111, projection='3d')
ax.plot3D(tn,yn[:,0], yn[:,1],'bx')
ax.plot3D(tn,lambdify(t, sol3.rhs)(tn), lambdify(t, sol3.rhs.diff(t))(tn), 'r')
ax.set_xlabel('t')
ax.set_ylabel('u_1')
ax.set_zlabel('u_2')
ax.set_title('Trajektorien')
plt.show()

2.2.5 Zwei Massen Feder System

System von linearen Differentialgleichungen 2. Ordnung

𝑞″
0 (𝑡) = −𝑘0𝑞0(𝑡) − 𝑘1(𝑞0(𝑡) − 𝑞1(𝑡)) (3)

𝑞″
1 (𝑡) = 𝑘1(𝑞0(𝑡) − 𝑞1(𝑡)) (4)

Anfangswerte
𝑞0(0) = 0, 𝑞′

0(0) = 1, 𝑞1(0) = 0, 𝑞′
1(0) = 0

[42]: q0 = Function('q_0')
q1 = Function('q_1')
t, k0, k1 = symbols('t k_0 k_1', real=True)

11

[43]: dgl_orig = [
Eq(q0(t).diff(t, 2), -k0 * q0(t) - k1 * (q0(t) - q1(t))),
Eq(q1(t).diff(t, 2), k1 * (q0(t) - q1(t)))

]
dgl_orig

[43]:
[𝑑2

𝑑𝑡2 𝑞0(𝑡) = −𝑘0𝑞0(𝑡) − 𝑘1 (𝑞0(𝑡) − 𝑞1(𝑡)) , 𝑑2

𝑑𝑡2 𝑞1(𝑡) = 𝑘1 (𝑞0(𝑡) − 𝑞1(𝑡))]

[44]: dgl = [dgl_.subs({k0: 9, k1: 16}) for dgl_ in dgl_orig]
dgl

[44]:
[𝑑2

𝑑𝑡2 𝑞0(𝑡) = −25𝑞0(𝑡) + 16𝑞1(𝑡), 𝑑2

𝑑𝑡2 𝑞1(𝑡) = 16𝑞0(𝑡) − 16𝑞1(𝑡)]

[45]: awe = {
q0(0): Rational(1, 2),
q0(t).diff(t).subs(t, 0): 0,
q1(0): Rational(1, 2),
q1(t).diff(t).subs(t, 0): 0

}
sol = dsolve(dgl, [q0(t), q1(t)], ics=awe)
sol

[45]:
⎡⎢
⎣

𝑞0(𝑡) =
√41 −

√
1105√√

1105 + 41 (23
√

1105 + 1105) cos (
√

2𝑡√41−
√

1105
2)

106080 +
(1105 − 23

√
1105) cos (

√
2𝑡√√

1105+41
2)

4420 , 𝑞1(𝑡) =
√√

1105 + 41 (17
√

130 + 65
√

34) cos (
√

2𝑡√41−
√

1105
2)

8840 +
(1105 − 41

√
1105) cos (

√
2𝑡√√

1105+41
2)

4420
⎤⎥
⎦

[46]: fig, ax = plt.subplots()
q0n = lambdify(t, sol[0].rhs)
q1n = lambdify(t, sol[1].rhs)
tn = np.linspace(0, 50, 2000)
ax.set_ylim((-9, 0))
L1, L2 = 3, 6
r, = ax.plot([0, 0, 0], [0, -L1, -L2],'ko')
r.set_markerfacecolor('lightgray')
l, = ax.plot([0, 0, 0], [0, -(L1 + q0n(0)), -(L2 + q1n(0))], 'ok-')
l.set_markersize(10)
l.set_markerfacecolor('cyan')
plt.pause(1)
for t_ in tn:

l.set_ydata([0, -(L1 + q0n(t_)), -(L2 + q1n(t_))])
plt.pause(0.001)

12

2.3 Weitere Beispiele

[47]: y = Function('y')
t, t0 = symbols('t t_0', real = True)
yy = symbols('yy')

2.3.1 DGL mit endlichen maximalen Definitionsbereich

[48]: dgl1 = Eq(y(t).diff(t), exp(y(t))*sin(t))
dgl1

[48]: 𝑑
𝑑𝑡𝑦(𝑡) = 𝑒𝑦(𝑡) sin (𝑡)

[49]: sol1 = dsolve(dgl1, ics={y(0):-S(1)/2})
sol1

[49]:
𝑦(𝑡) = log (− 1

− cos (𝑡) − 𝑒 1
2 + 1

)

Diese Lösung ist nur auf dem Intervall [−𝜋+arccos(exp(1/2)−1), 𝜋−arccos(exp(1/2)−1)] definiert

[50]: lsg = dsolve(dgl1)
lsg

[50]:
𝑦(𝑡) = log (− 1

𝐶1 − cos (𝑡))

[51]: tn = np.linspace(-3*np.pi, 3*np.pi, 3000)
yn = lambdify((t, S('C1')), lsg.rhs)

13

[52]: fig = plt.figure()
ax = fig.add_subplot()
for C in np.linspace(-1.4, 1.2, 11):

ax.plot(tn, yn(tn, C), label=f"C={C:1.2}")
ax.axis(ymax=5)
plt.legend()

<lambdifygenerated-13>:2: RuntimeWarning: invalid value encountered in log
return log(-1/(C1 - cos(t)))

[52]: <matplotlib.legend.Legend at 0x7f65ce062e10>

[53]: tq = np.linspace(tn[0], tn[-1], 20)
yq = np.linspace(-1, 5, 20)
X, Y = np.meshgrid(tq, yq)
r_n = lambdify((t, y(t)), dgl1.rhs)
V = r_n(X, Y)

[54]: U = np.ones_like(X)
ax.quiver(X, Y, U, V, angles='xy')

[54]: <matplotlib.quiver.Quiver at 0x7f65cdee7ef0>

Hier ist es besser, die Pfeile zu normieren.

14

[55]: nv = np.sqrt(1+V**2)
V /= nv
U /= nv

[56]: fig = plt.figure(figsize=(10,6))
ax = fig.add_subplot(111)
for C in np.linspace(-1.4, 1.2, 11):

ax.plot(tn, yn(tn, C))
ax.axis(ymax=5)
ax.quiver(X, Y, U, V, angles='xy');

maximaler Definitionsbereich Für welche 𝑦0 ist die Lösung mit der Anfangsbedingung 𝑦(0) =
𝑦0 auf ganz ℝ definiert?

[57]: y0 = S('y0')
ics = {y(0): y0}

[58]: lsg = dsolve(dgl1, ics=ics)
lsg

[58]:
𝑦(𝑡) = log (− 1

− cos (𝑡) + 1 − 𝑒−𝑦0
)

Dazu muss der Nenner immer negativ sein.

Wir isolieren den Nenner.

15

[59]: lsg.rhs.args[0].args[1].args[0]

[59]: − cos (𝑡) + 1 − 𝑒−𝑦0

Wird am größten für 𝑡 = 𝜋
[60]: b = lsg.rhs.args[0].args[1].args[0].subs(t, pi)

b

[60]: 2 − 𝑒−𝑦0

[61]: I1 = solveset(b < 0, domain=Reals)
I1

[61]: (−∞, − log (2))

[62]: y_ = lsg.rhs.subs(y0, I1.end)
y_

[62]:
log (− 1

− cos (𝑡) − 1)

[63]: y_n = lambdify(t, y_)
plt.plot(tn, y_n(tn))
plt.axis(ymax=5)

<lambdifygenerated-15>:2: RuntimeWarning: divide by zero encountered in divide
return log(-1/(-cos(t) - 1))

<lambdifygenerated-15>:2: RuntimeWarning: invalid value encountered in log
return log(-1/(-cos(t) - 1))

[63]: (−10.3603419484056, 10.3603419484056, −1.379277340083, 5.0)

16

[64]: tn = np.linspace(-2, 6, 100)
plt.figure(8)
plt.plot(tn, lambdify(t, sol1.rhs)(tn), 'b')
(pi - acos(exp(1 / 2) - 1)).n()

<lambdifygenerated-16>:2: RuntimeWarning: invalid value encountered in log
return log(-1/(-cos(t) - exp(1/2) + 1))

[64]: 2.27669928768065

2.3.2 AWP mit zwei Lösungen

[65]: dgl2 = Eq((t**2 + 2 * t) * y(t) * exp(y(t)**2) * y(t).diff(t), 1)
dgl2

[65]:
(𝑡2 + 2𝑡) 𝑦(𝑡)𝑒𝑦2(𝑡) 𝑑

𝑑𝑡𝑦(𝑡) = 1

[66]: sol2 = dsolve(dgl2, ics={y(2): 0})
sol2

[66]: [𝑦(𝑡) = −√log (log (𝑡) − log (𝑡 + 2) + log (2) + 1), 𝑦(𝑡) = √log (log (𝑡) − log (𝑡 + 2) + log (2) + 1)]
Hier gibt es zwei Lösungen zum Anfangswert y(2)=0

[67]: tn = np.linspace(2, 5, 200)
plt.figure()
plt.plot(tn,

lambdify(t, sol2[0].rhs)(tn), 'b', tn,
lambdify(t, sol2[1].rhs)(tn), 'r');

17

2.3.3 AWP mit unendlich vielen Lösungen

[68]: dgl3 = Eq(y(t).diff(t)*sin(t), 2*y(t)*cos(t))
dgl3

[68]:
sin (𝑡) 𝑑

𝑑𝑡𝑦(𝑡) = 2𝑦(𝑡) cos (𝑡)

[69]: sol3 = dsolve(dgl3)
sol3

[69]: 𝑦(𝑡) = 𝐶1 sin2 (𝑡)
Da y(0) = 0 unabhängig von C1 gilt, gibt es unendlich viele Lösungen

[70]: sol3aw = dsolve(dgl3, ics={y(1):1})
sol3aw

[70]:
𝑦(𝑡) = sin2 (𝑡)

sin2 (1)

[71]: tn = np.linspace(-2, 10, 100)
plt.figure()
for c1 in [-2, -1, 1e-10, 1, 2]:

plt.plot(tn, lambdify(t, sol3.rhs.subs(S('C1'), c1))(tn))

18

[]:

19

	Lektion 13
	Differentialgleichungen (Teil 2)
	Logistische Gleichung (Wiederholung)
	Anpassung an Anfangswert

	Systeme von DGLen
	Lineare Systeme - Matrixexponentialfunktion
	Zweite Ordnung DGL
	Pendelgleichung (physikalisches Pendel)
	Phasenraum und Trajektorien
	Zwei Massen Feder System

	Weitere Beispiele
	DGL mit endlichen maximalen Definitionsbereich
	AWP mit zwei Lösungen
	AWP mit unendlich vielen Lösungen

