lektionl3 i

January 22, 2026

Inhalt

1 Logistische Gleichung (Wiederholung)

1.1 Anpassung an Anfangswert

2 Systeme von DGLen

2.1 Lineare Systeme - Matrixexponentialfunktion
2.2 Zweite Ordnung DGL

2.3 Pendelgleichung (physikalisches Pendel)

2.4 Phasenraum und Trajektorien

2.5 Zwei Massen Feder System

3 Weitere Beispiele

3.1 DGL mit endlichen maximalen Definitionsbereich
3.2 AWP mit zwei Losungen

3.3 AWP mit unendlich vielen Lésungen

1 Lektion 13

[1]: import matplotlib.pyplot as plt
import numpy as np
from sympy import *
init_printing()
Jmatplotlib inline
plt.rcParams['figure.figsize']l = (5, 3)

2 Differentialgleichungen (Teil 2)

y'(t) = fly,t), ylto) =¥

2.1 Logistische Gleichung (Wiederholung)

einfaches Modell zur Beschreibung von Wachstum in einem Habitat mit beschrénkten Resourcen

y'(t) = (1 —y@)y(t)

[2]: y = Function('y"')
t, t0, tau, yO = symbols('t t_O tau yO', real=True)
yy = symbols('yy"')
dgl = Eq(y(t).diff(t), (1 - y(t)) * y(t))

dgl

[2]1: ¢4 .
V() =1 —y()y(®)

[3]: sol = dsolve(dgl, y(t))
sol

[3]: 1

y(t) = Cretrl

[4]: aw = {y(t0): yO0}
sol_aw = dsolve(dgl, y(t), ics=aw)
sol_aw

[4]: 1
Y = T e
Yo
[5]: fig = plt.figure(1)
fig.clf(Q
ax = fig.gca()

tn = np.linspace(0, 5, 101)
y_ = sol_aw.rhs.subs(t0, 0).subs(y0, .25) # Anfangsbedingung y(0)= 0.1
yn = lambdify(t, y_)

ax.plot(tn, yn(tn))

[5]: [<matplotlib.lines.Line2D at 0x7£65dal162600>]

1.0+

0.8

0.6

0.4

[6]: fig = plt.figure(2)

ax = fig.gca()

tn = np.linspace(0, 5, 201)

for y_ 0 in [.01, .25, .5, 1.5, 2]: # mehrere Anfangsbedingungen
y_ = sol_aw.rhs.subs(t0, 0).subs(y0, y_0)
yn = lambdify(t, y_)
ax.plot(tn, yn(tn), label=f"zu y(0)= {y_0}")

ax.legend ()

ax.set_title(f"Loésungen zu ${latex(dgl)}$");

Losungen zu gfy{t] =(1—y(t))y(t)

2.0 7 — zu y(0)= 0.01
— zu y(0)=0.25

1.5 1 — zuyl(0)=0.5
— zuyl(0)=1.5
— zuy(0)=2

1.0 1

0.5_ /

0.0

0 1 2 3 4 5

[7]1: £ = dgl.rhs.subs(y(t), yy)
f
[7]:
yy (1 —yy)
[8]: fn = lambdify(yy, f)
tg = np.linspace(0, 5, 10)
yg = np.linspace(0.1, 1.9, 20)
TT, YY = np.meshgrid(tg, yg)
ax.quiver (TT, YY, np.ones_like(YY), fn(YY), angles='xy');
angles='zy' ist wichtig fur korrekte Richtungen der Vektoren!
2.1.1 Anpassung an Anfangswert
[9]: sol
[9]: 1
y(t)

[10]:

[10]:

[11]:

[11]:

[12]:

[12]:

[13]:

[14]:

[14]:

[15]:

[15]:

[16]:

[16]:

cl_s = S('C1")
cl_s

G

Cl = solve(sol, c1_s)[0].subs(t, t0).replace(y(t0),y0)
C1

eto

—6%<+4—7
Yo

ys = sol.subs(cl_s, C1)
yS

1
(4,€t0 + %E%) et+1

y(t) =

2.2 Systeme von DGLen
2.2.1 Lineare Systeme - Matrixexponentialfunktion

Fiir eine Matrix n x n A suchen wir eine Losung u : [ty, 7] — R™ von

u'(t) = Au(t), u(0) =y,

t = symbols('t', real=True)
A = Matrix(3, 3, [2, 1, 0,\
0y 25 1N
0, 0, 21)
A
210
0 2 1
0 0 2
exp (t*A)
o2t 42t 2
0 €2t t€2t
0 0 €%

u0 = Matrix(3, 1, [1, 2, 3]) # Anfangswert
u0

[17]: = exp(t*A)*ul

u
u

3te?t + 2e%t

[17]: 3t22e2f 1 2te2t 4 2t
3€2t

[18]: u.diff(t) - Axu

[18]: 0
0

2.2.2 Zweite Ordnung DGL

Harmonischer Oszillator

3y (t) =-y(t) $

[19]: dgl = Eq(y(t).diff(t, 2), -y(t))
dgl

[19] : d2
25yl = —y(t)

[20]: dsolve(dgl, y(t))

L20]: y(t) = C;sin (t) + Cycos (t)

dquivalentes System 1. Ordnung

up(t) = uy(t)
—uy (1)

<
o~
—~
~

I

in Matrixschreibweise

W' (t) = Au(t) := f(u(t))

[21]: A = Matrix(2, 2, [0, 1, -1, 0])

A
[21]: 0 1
e
[22]: u0 = Matrix(2, 1, [1, 0])
u0
[22]: 1
)

[23]:

[23]:

[24] :

[25] :

[26] :

[27]:

MexpA = lambda t: simplify((t*A).exp())
MexpA(t)

[cos(t) sin (t)]

—sin (t) cos(t)

u = MexpA(t)*u0
un = lambdify(t,u)

def f(u):
return ul1], -u[0]

ul = np.linspace(-2.0, 2.0, 15)
u2 = np.linspace(-2.0, 2.0, 10)
tn = np.linspace(0, 3 / 2 * np.pi)

Ul, U2 = np.meshgrid(ul, u2)
U, Vv = f([Uu1, U2])

fig = plt.figure(3)

ax = fig.add_subplot(111)
ax.plot(un(tn) [0] [0], un(tn) [1][0])
ax.set_title('Phasenraum')

ax.quiver (U1, U2, U, V, angles='xy', color='m')

ax.set_aspect('equal');

Phasenraum

AP A m oo ~ NN\
.""f.—")‘"z,.r-,__ -
- NN\

l_
.’f!;;,.,hh‘a&xa
Ptoe g

l\-;ll

D_1 I

L
AL L by
—1“\\\\\.1

M AW

NN~ ~eee

C s

T

=2 -1

0

2.2.3 Pendelgleichung (physikalisches Pendel)

Nichtlineare Differentialgleichung 2. Ordnung;:

1

2

[28]:

[28]:

[29]:

[30]:

[31]:

[32]:

[33]:

d
yi(t) i=a(l), yo(t) = aa(t)
vi(t) = wolt)
ya(t) = —sin(y, (1))
y,: Winkel
Yo: Winkelgeschwindigkeit
dgl = Eq(y(t).diff(t, 2), -sin(y(t)))
dgl
d2
@y(t) = —sin (y(1))
#sol = dsolve(dgl, y(t)) # das kann sympy nicht
#sol
2.2.4 Phasenraum und Trajektorien
vgl. Ana 11 Kurzskript Kap. 20

duesseldorf.de/~internet /ana2 19/vorlesung.pdf
duesseldorf.de/~adams/static/analysis2_ ws2025/analysis2_skript.pdf

def f(y, t):
yl = yl[0]
y2 = y[1]

return y2, -np.sin(yl)

yl = np.linspace(-3.0, 3.0, 15)
y2 = np.linspace(-2.0, 2.0, 10)
Y1, Y2 = np.meshgrid(yl, y2)

t0 =0

U, v=£([Y1, Y21, t0)

fig = plt.figure(4)

ax = fig.add_subplot(111)
ax.set_title('Phasenraum')

ax.quiver(Y1l, Y2, U, V, angles='xy', color='m')
ax.set_aspect('equal')

ax.set_xlabel('y_1 Winkel')

http://www.math.uni-
https://www.math.uni-

[34]:

[34]:

[35]:

ax.set_ylabel('y_2 Winkelgeschwindigkeit');

Phasenraum

N 3 A A S NN N N w
- A F X A e o
« 44 A g,
T T
O T T T

ol U TN
‘1*‘11
L B

R

y2 Winkelgeschwindigkeit
o

-7 _ah‘“u‘&‘&‘“m‘n._rffﬁf P

-3 -2 -1 0 1 2 3
y1 Winkel

from scipy.integrate import odeint # numerische Integration (numerischesy
wLésungsverfahren fur DGL)

Das kommt sicher nicht in der Klausur dran!

tn = np.linspace(0, 2.5, 10)

yO = np.array([0.0, 1]) # Anfangswert

yn = odeint(f, yO, tn) #berechnet Niherungslosung y fiur jeden Wert in tn

yn

array([[0. , 1. 1,
[0.27423279, 0.96190773],
[0.52781962, 0.85312045],
[0.74293751, 0.68772761],
[0.90626302, 0.48309797],
[1.0091793 , 0.25516877],
[1.04703987, 0.01652653],
[1.01830076, -0.22276961],
[0.92412561, -0.45284143],
[0.76868903, -0.6615476811)

fig = plt.figure(5)

axl = fig.add_subplot(121)

axl.quiver(Y1l, Y2, U, V, angles='xy', color='k")
axl.set_aspect('equal');
axl.set_xlabel('$y_13');

axl.set_ylabel('$y_23%');
axl.set_title('Phasenraum')

ax2 = fig.add_subplot(122)
ax2.set_title('Trajektorien')

tn = np.linspace(0, 11, 100)
for y20 in np.linspace(0.3, 1.9, 4):
yo = [0.0, y20]

yn = odeint(f, y0, tn)

line, = axl.plot(yn[:,0], ynl:,1], '-') # Phasenportrdit (Lésung im,
< Phasenraum)

axl.plot(yn[0,0], yn[0,1], 'o', color=line.get_color(), markersize=10) #,
wStartwert

axl.plot(yn[-1,0], yn[-1,1], 'd', color=line.get_color(), markersize=10) #,
~Wert zum Endzeitpunkt

ax2.plot(tn, yn[:,0], '--', color=line.get_color()) # y_1
ax2.plot(tn, yn[:,1], ':', color=line.get_color()) # y_2
ax2.set_xlabel('t')

ax2.set_ylabel('$y_1, y_23%')

Trajektorien

Phasenraum Y

[36]: yO
yn

[0.0, .4]
odeint (f, y0, tn)

fig = plt.figure(6)

ax = fig.add_subplot(111l, projection='3d"')
ax.plot3D(tn, yn[:, 0], yn[:, 11)
ax.set_xlabel('t')

ax.set_ylabel('y_1"')
ax.set_zlabel('y_2"')
ax.set_title('Trajektorie');

Trajektorie

0.4
0.2
0.0
-0.2
—-0.4
0.4
0.2
0.0 0.0
2'55.0?5 -0.2 ¥~
t+ '""100 —04

[37]: ax.view_init (0, 0)
ax.set_proj_type('ortho') # focal_lenght = oo, FOV = 0 deg
#ax.set_proj_type('persp') # focal_lenght 1 ,FOV = 90 deg
#azx.set_proj_type('persp', focal_length=0.2) # FOV = 157.4 deg
plt.show()

[38]: ax.view_init(0, 90)
plt.show()

[39]: ax.view_init (90,-90)
plt.show()

falls der Winkel klein ist, ist
sin(a) ~ «

und wir erhalten als Approximation den harmonischen Oszillator

u

(t) = uy(t)

up(t) = —uy (1)

—_~

10

[40] :

[41]:

[42]:

dgl3 = Eq(y(t).diff(t, 2), -y(t))
awe = {y(0): yO[0], y(t).diff(t).subs(t, 0): yO[1]}
sol3 = dsolve(dgl3, y(t), ics=awe)

fig = plt.figure(7)
= fig.add_subplot(11l, projection='3d")

ax
ax
ax

ax.
.set_ylabel('u_1")

ax

ax.

ax

set_xlabel('t')

set_zlabel('u_2')

plt.show()

.plot3D(tn,yn[:,0], ynl:,1], 'bx")
.plot3D(tn,lambdify(t, sol3.rhs) (tn), lambdify(t, sol3.rhs.diff(t))(tn), 'r')

.set_title('Trajektorien')

Trajektorien

¢ P10 -04

2.2.5 Zwei Massen Feder System

System von linearen Differentialgleichungen 2. Ordnung

Anfangswerte

90 = Function('q_0"')
gl = Function('q_1")
t,

o (1) = —koqo(t) — k1(qo(t) — ¢4 (1))
a1 (t) = k1(qo(t) — ¢4 (1))

q0(0) = 0,¢5(0) = 1,4;(0) = 0,¢7(0) = 0

k0, k1 = symbols('t k_ 0 k_1', real=True)

11

[43]: dgl_orig = [
Eq(q0(t) .diff(t, 2), -kO * q0(t) - k1 * (q0(t) - qi(t))),
Eq(ql(t).diff(t, 2), k1 * (q0(t) - q1(t)))
]

dgl_orig
[43] : d2 d2
[dtg%(t) = —koqo(t) — k1 (q0(t) — ¢4 (2)) ﬁ% (t) =k (q(t) — ¢4 (t))}
[44]: dgl = [dgl_.subs({kO: 9, ki1: 16}) for dgl_ in dgl_orig]
dgl
[44] : d? d2
[MQO<t) = —25¢(t) + 16¢, (1), proks (t) = 16q,(t) — 164, (t)}

[45]: awe = {
q0(0): Ratiomnal(l, 2),
q0(t) .diff (t) .subs(t, 0): O,
q1(0): Rational(l, 2),
ql(t) .diff(t) .subs(t, 0): O

}
sol = dsolve(dgl, [qO0(t), ql1(t)], ics=awe)
sol
45] :
o] V41 = VI105/V/IT05 + 41 (23V/T105 + 1105) cos (VZAII00) (1105 — 23/T105) cos (Y2100
q(t) = +

106080 4420

[46]: fig, ax = plt.subplots()
qOn = lambdify(t, sol[0].rhs)
qln = lambdify(t, sol[1].rhs)
tn = np.linspace(0, 50, 2000)
ax.set_ylim((-9, 0))
L1, L2 = 3, 6
r, = ax.plot([0O, O, 0], [0, -L1, -L2],'ko")
r.set_markerfacecolor('lightgray')
1, = ax.plot([0, O, 0], [0, -(L1 + qOn(0)), -(L2 + qin(0))], 'ok-')
1.set_markersize(10)

1.set_markerfacecolor('cyan')

plt.pause(1)

for t_ in tn:
1l.set_ydata([0, -(L1 + qOn(t_)), -(L2 + qin(t_))1)
plt.pause(0.001)

12

0 L
_2 -
o
__q_ -
_5 - 8
_8 -

T T T T T
—-0.04 —0.02 0.00 0.02 0.04

2.3 Weitere Beispiele

[47]: y = Function('y')
t, t0 = symbols('t t_0', real = True)

yy = symbols('yy"')

2.3.1 DGL mit endlichen maximalen Definitionsbereich

[48]: dgll = Eq(y(t).diff(t), exp(y(t))#*sin(t))
dgli

[48]: ¢4
_ — e¥(®) gj
dty(t) e¥sin (1)

[49]: soll = dsolve(dgll, ics={y(0):-S(1)/2})
soll

[49]: 1
t)=log | — :
v(t) 0g< —COS(t)—€2+1>

Diese Losung ist nur auf dem Intervall [—m +arccos(exp(1/2)—1), m—arccos(exp(1/2) —1)] definiert

[50]: 1sg = dsolve(dgll)

1sg
[50] : 1
t) =1 —_
o0 =1 (=57)
[61]: tn = np.linspace(-3*np.pi, 3*np.pi, 3000)
yn = lambdify((t, S('C1')), 1lsg.rhs)

13

[52]: fig = plt.figure()
ax = fig.add_subplot ()
for C in np.linspace(-1.4, 1.2, 11):
ax.plot(tn, yn(tn, C), label=f"C={C:1.2}")
ax.axis(ymax=5)
plt.legend()

<lambdifygenerated-13>:2: RuntimeWarning: invalid value encountered in log
return log(-1/(C1 - cos(t)))

[62]: <matplotlib.legend.Legend at 0x7£65ce062e10>

[¥%) -

1 1
o000 0°0
e e
[= = el
w o o=
=

[63]: tq = np.linspace(tn[0], tn[-1], 20)
yq = np.linspace(-1, 5, 20)
X, Y = np.meshgrid(tq, yq)
r_n = lambdify((t, y(t)), dgll.rhs)
V=r_nX, Y)

[54]: U = np.ones_like(X)
ax.quiver(X, Y, U, V, angles='xy')

[64]: <matplotlib.quiver.Quiver at 0x7f65cdee7ef0>

Hier ist es besser, die Pfeile zu normieren.

14

[655]: nv = np.sqrt(1+V**2)
V /= nv
U /= nv

[66]: fig = plt.figure(figsize=(10,6))
ax = fig.add_subplot(111)
for C in np.linspace(-1.4, 1.2, 11):
ax.plot(tn, yn(tn, C))
ax.axis(ymax=5)
ax.quiver(X, Y, U, V, angles='xy');

5 M

) } t Vol { 1l _
N } o Vot ' |
B - P b {| =
- | o0 ot { 1
) | t Vol { |
-] Wt | {| =
3 b AV T i
e i 1] 1 Vo[-
= ff ||t [Vol -
21) \ \ -
1 if'l -
17 7 \ \ e
2 7 -
- ” N N ~
] \ N N\
1N PN\ N\ o e
N s N N 7 oA
L ST LIS A INTE 2
—IIO.O —}: 5 =5.0 —-2.5 O.IO 2.5 5I0 7.5 10.0

maximaler Definitionsbereich Fiir welche y, ist die Losung mit der Anfangsbedingung y(0) =
Yo auf ganz R definiert?

[67]: y0 = S('y0"')
ics = {y(0): yO}

[68]: 1sg = dsolve(dgll, ics=ics)
1sg

[58]:

y(t) = log (_— cos (t) Jlr 1—e o)

Dazu muss der Nenner immer negativ sein.

Wir isolieren den Nenner.

15

[69]: 1lsg.rhs.args[0].args[1].args[0]

L59]: —cos(t)+1—e ¥

Wird am grofiten fir t =«

[60]: b = 1sg.rhs.args[0] .args[1] .args[0].subs(t, pi)
b

[60]: pp—

[61]: I1 = solveset(b < 0, domain=Reals)

I1

[61]:
(—o0, —log (2))

[62]: y_ = lsg.rhs.subs(y0, Il.end)
y_

[62] : 1
log <__——cos(t)——1>

[63]: y_n = lambdify(t, y_)
plt.plot(tn, y_n(tn))
plt.axis(ymax=5)

<lambdifygenerated-15>:2: RuntimeWarning: divide by zero encountered in divide
return log(-1/(-cos(t) - 1))

<lambdifygenerated-15>:2: RuntimeWarning: invalid value encountered in log
return log(-1/(-cos(t) - 1))

63l (—10.3603419484056, 10.3603419484056, —1.379277340083, 5.0)

T T T T T
-100 =75 -50 =25 0.0 2.5 50 7.5 10.0

16

[64]: tn = np.linspace(-2, 6, 100)
plt.figure(8)
plt.plot(tn, lambdify(t, soll.rhs) (tn), 'b')
(pi - acos(exp(l / 2) - 1)).n(0)

<lambdifygenerated-16>:2: RuntimeWarning: invalid value encountered in log
return log(-1/(-cos(t) - exp(1/2) + 1))

(6415 97669928768065

2.3.2 AWP mit zwei L6sungen

[65]: dgl2 = Eq((t**2 + 2 * t) * y(t) * exp(y(t)**2) * y(t).diff(t), 1)
dgl2

[65] : oo d
(2 +2t) y(t)er V) —y(t) = 1

[66]: sol2 = dsolve(dgl2, ics={y(2): 0})
s012

[66]:

[y(t) = —/log (log (t) — log (t + 2) + log (2) + 1), y(t) = \/log (log (t) — log (t + 2) + log (2) + 1)J

Hier gibt es zwei Losungen zum Anfangswert y(2)=0

[67]: tn = np.linspace(2, 5, 200)
plt.figure()
plt.plot(tn,
lambdify(t, sol2[0].rhs) (tn), 'b', tn,
lambdify(t, sol2[1].rhs)(tn), 'r');

17

[68]:

[68]:

[69]:

[69]:

[70]:

[70]:

[71]:

0.6

0.4

0.2

0.0

—'[]'.2 -

_'U'.4 -

2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.3.3 AWP mit unendlich vielen Losungen

dgl3 = Eq(y(t).diff(t)*sin(t), 2*y(t)*cos(t))
dgl3

sin (t)%y(t) = 2y(t) cos (t)

sol3 = dsolve(dgl3)
s0l3

y(t) = Cy sin® (1
Da y(0) = 0 unabhéngig von C1 gilt, gibt es unendlich viele Losungen

sol3aw = dsolve(dgl3, ics={y(1):1})

sol3aw
.2
sin” ()
t) =
y(t) sin’ (1)

tn = np.linspace(-2, 10, 100)
plt.figure()
for c1 in [-2, -1, 1le-10, 1, 2]:
plt.plot(tn, lambdify(t, sol3.rhs.subs(S('C1'), c1))(tn))

18

[]:

19

10

	Lektion 13
	Differentialgleichungen (Teil 2)
	Logistische Gleichung (Wiederholung)
	Anpassung an Anfangswert

	Systeme von DGLen
	Lineare Systeme - Matrixexponentialfunktion
	Zweite Ordnung DGL
	Pendelgleichung (physikalisches Pendel)
	Phasenraum und Trajektorien
	Zwei Massen Feder System

	Weitere Beispiele
	DGL mit endlichen maximalen Definitionsbereich
	AWP mit zwei Lösungen
	AWP mit unendlich vielen Lösungen

