
lektion12

January 14, 2026

Inhalt

1 Gradient, Hessematrix (Wiederholung)

2 Beispiel

2.1 Extrema (Wiederholung)

2.2 Tangenten

2.3 Gradient als Vektorfeld (quiver) Höhenlinien (contour)

3 Differentialgleichungen

3.1 erstes Beispiel

3.2 Inhomogene lineare Differentialgleichung erster Ordnung

3.3 Variation der Konstanten Formel

3.4 Lösung mit einem Reihenansatz

3.5 Logistische Gleichung

1 Lektion 12
[1]: import matplotlib.pyplot as plt

import numpy as np
from sympy import *
init_printing()
%matplotlib inline

1.1 Gradient, Hessematrix (Wiederholung)

[2]: x, y, z = symbols('x y z')
var = (x, y, z)

[3]: f = Function('f')
f(*var)

[3]: 𝑓(𝑥, 𝑦, 𝑧)

1

[4]: G = Matrix([f(*var)]).jacobian(var)
G

[4]: [𝜕
𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕

𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕
𝜕𝑧𝑓(𝑥, 𝑦, 𝑧)]

[5]: H = hessian(f(*var), var)
H

[5]:
⎡⎢⎢
⎣

𝜕2
𝜕𝑥2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧2 𝑓(𝑥, 𝑦, 𝑧)

⎤⎥⎥
⎦

[6]: Matrix([f(*var)]).hessian(var)

AttributeError Traceback (most recent call last)
Cell In[6], line 1
----> 1 Matrix([f(*var)]).hessian(var)

AttributeError: 'MutableDenseMatrix' object has no attribute 'hessian'

[7]: H = Matrix([f(*var)]).jacobian(var).jacobian(var)
H

[7]:
⎡⎢⎢
⎣

𝜕2
𝜕𝑥2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧2 𝑓(𝑥, 𝑦, 𝑧)

⎤⎥⎥
⎦

1.2 Beispiel

[8]: var = (x, y)
f = 2 - x**2 / 2 - y**2
f

[8]:
−𝑥2

2 − 𝑦2 + 2

[9]: fn = lambdify(var, f)

[10]: xn = np.linspace(-1.5, 1.5, 91)
yn = np.linspace(-1, 1, 61)
X, Y = np.meshgrid(xn, yn)
F = fn(X, Y)

[11]: fig1 = plt.figure()
ax1 = fig1.add_subplot(projection='3d')

2

ax1.plot_surface(X, Y, F, alpha=.2, cmap=plt.cm.viridis)
ax1.contour(X, Y, F)

[11]: <mpl_toolkits.mplot3d.art3d.QuadContourSet3D at 0x7fa825d4fe60>

1.2.1 Extrema (Wiederholung)

[12]: ext = solve(Matrix([f]).jacobian(var))
ext

[12]: {𝑥 ∶ 0, 𝑦 ∶ 0}

[13]: H = hessian(f, var)
H

[13]:
[−1 0

0 −2]

3

1.2.2 Tangenten

[15]: fig1d = plt.figure()
ax1d = fig1d.gca()

pnt = {x: -.1, y: -.5}

def tangente1dx(f, pnt):
""" Parametrisierung der Tangeten an f in pnt in x-Richtung
"""
t = np.linspace(-.5, .5)
return t, f.subs(pnt) + f.diff(x).subs(pnt) * (t - pnt[x])

ax1d.plot(xn, fn(xn, pnt[y]))
ax1d.plot(*tangente1dx(f, pnt))

t = symbols('t')
fdxn = lambdify((x, y), f.diff(x))
xn_c = xn[2:-2:8]

ax1d.quiver(xn_c,
fn(xn_c, pnt[y]),
1 + 0 * xn_c,
fdxn(xn_c, pnt[y]),
angles='xy', scale_units='xy', scale=3, color='purple')

ax1d.scatter(xn_c, fn(xn_c, pnt[y]), c='red')

[15]: <matplotlib.collections.PathCollection at 0x7fa824bd2840>

4

[16]: fig1 = plt.figure()
ax1 = fig1.add_subplot(111, projection='3d')
ax1.plot_surface(X, Y, F, cmap=plt.cm.viridis, alpha=0.2)
ax1.set_xlabel('x')
ax1.set_ylabel('y')

vec = [1, 0]

def cut(pnt, f, vec, scale=1):
'''
Schnittkurve durch Punkt pnt in Richtung vec
'''
tn = np.linspace(-1, 1) / scale
xn = pnt[x] + vec[0] * tn
yn = pnt[y] + vec[1] * tn
zn = lambdify((x, y), f)(xn, yn)
return xn, yn, zn

ax1.scatter(pnt[x], pnt[y], f.subs(pnt), c='r', s=50)
ax1.plot(*cut(pnt, f, vec), 'r', lw=3)

5

def tangente2(pnt, f, vec, var, scale=1):
'''
Tangente an Punkt (pnt, f(pnt)) in Richtung vec
als parametrische Kurve
'''
t_ = symbols('t')
fc = (f + t_ *

(Matrix([f]).jacobian(var).dot(Matrix(2, 1, vec)))).subs(pnt)
fcn = lambdify(t_, fc)

tn = np.linspace(-1, 1) / scale
xn = pnt[x] + vec[0] * tn
yn = pnt[y] + vec[1] * tn
zn = fcn(tn)

return xn, yn, zn

ax1.plot(*tangente2(pnt, f, vec, var), 'c', lw=3)

[16]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa81ca69160>]

6

1.2.3 Gradient als Vektorfeld (quiver) Höhenlinien (contour)

[18]: X, Y = np.meshgrid(xn, yn)
X_c = X[5:-2:7,5:-2:7]
Y_c = Y[5:-2:7,5:-2:7]
grad = Matrix([f]).jacobian((x, y))
gradn = lambdify((x, y), grad)
GR = gradn(X_c, Y_c)[0]

[19]: fig = plt.figure()
ax = fig.gca()
ax.contour(X, Y, fn(X, Y), 10)
ax.set_aspect('equal', 'box')

ax.quiver(X_c, Y_c, GR[0], GR[1], angles='xy', scale_units='xy', scale=8,␣
↪color='red');

t_, dx, dy = symbols('t dx dy')
fc = f.subs({x: x + t_ * dx, y: y + t_ * dy})
dfc = diff(fc, t_)
dfcn = lambdify((x, y, dx, dy, t_), dfc)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(X, Y, fn(X, Y), cmap=plt.cm.viridis, alpha=.2)

zG = dfcn(X_c, Y_c, GR[0, :, :], GR[1, :, :], 0)

ax.quiver(X_c, Y_c, fn(X_c, Y_c), GR[0, :, :] / 10,
GR[1, :, :] / 10, zG / 10)

pnt = {x: X_c[1, 7], y: Y_c[1, 7]}
ax.plot(*tangente2(pnt, f, GR[:, 1, 7], var=var, scale=3), 'm', lw=3)
ax.plot(*cut(pnt, f, GR[:, 1, 7], scale=3), 'r', lw=1)

[19]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa81acd0350>]

7

8

1.3 Differentialgleichungen
vgl. Analysis II

1.3.1 erstes Beispiel

[20]: import matplotlib.pyplot as plt
import numpy as np
from sympy import *
init_printing()
%matplotlib notebook

Gesucht ist eine differenzierbare Funktion 𝑦 ∶ ℝ → ℝ mit

𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡).

[21]: y = Function('y')
t, tau = symbols('t tau', real = True)
dgl = Eq(y(t).diff(t), y(t))
dgl

[21]: 𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡)

[22]: sol = dsolve(dgl, y(t))
sol

[22]: 𝑦(𝑡) = 𝐶1𝑒𝑡

[23]: sol.subs(symbols('C1'), 1)

[23]: 𝑦(𝑡) = 𝑒𝑡

[24]: c1_s=symbols('C1')

Wir ergänzen die Differentialgleichunng mit einer Anfangsbedingung zur einem Anfangswertprob-
lem.

Gesucht ist 𝑦 ∶ ℝ → ℝ mit

𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡)

𝑦(𝑡0) = 𝑦0

[25]: t0, y0 = symbols('t_0 y_0')
eq = sol.subs({t: t0}).subs({y(t0): y0})
eq

[25]: 𝑦0 = 𝐶1𝑒𝑡0

9

[26]: sol = sol.subs(c1_s, solve(eq, c1_s)[0])
sol

[26]: 𝑦(𝑡) = 𝑦0𝑒𝑡𝑒−𝑡0

[27]: checkodesol(dgl, sol)

[27]: (True, 0)

Das geht auch einfacher

[28]: aw = {y(t0): y0} # Anfangswerte (initial conditions)

[29]: dsolve(dgl, y(t), ics=aw)

[29]: 𝑦(𝑡) = 𝑦0𝑒𝑡𝑒−𝑡0

1.3.2 Inhomogene lineare Differentialgleichung erster Ordnung

𝑢′(𝑡) = 𝑢(𝑡) + sin(𝑡)

[30]: u = Function('u')
t = symbols('t', real=True)
dgl = Eq(u(t).diff(t) - u(t) - sin(t), 0)
sol = dsolve(dgl, u(t))
sol

[30]:
𝑢(𝑡) = 𝐶1𝑒𝑡 − sin (𝑡)

2 − cos (𝑡)
2

[31]: c1 = solve(sol.subs(t, t0), c1_s)[0]
c1

[31]:
(𝑢(𝑡0) +

√
2 sin (𝑡0 + 𝜋

4)
2) 𝑒−𝑡0

[]: w = sol.subs(c1_s, c1)
w = w.rhs.subs(t0, 0)
w

1.3.3 Variation der Konstanten Formel

Die Lösung von
𝑑
𝑑𝑡𝑢(𝑡) = 𝑎𝑢(𝑡) + 𝑔(𝑡, 𝑢(𝑡)), 𝑢(0) = 𝑢0

ist
𝑢(𝑡) = e𝑎𝑡𝑢0 + ∫

𝑡

0
e𝑎(𝑡−𝜏)𝑔(𝜏, 𝑢(𝜏))𝑑𝜏

10

Für das Beispiel oben ist 𝑎 = 1 und 𝑔(𝑡, 𝑢) = sin(𝑡). Das ergibt:

[]: v = u(0) * exp(t) + integrate(exp(t - tau) * (sin(tau)), (tau, 0, t))
v

[]: simplify(v - w)

1.3.4 Lösung mit einem Reihenansatz

𝑦′(𝑡) = 𝑦(𝑡), 𝑦(0) = 1
mit einem Reihenansatz

[]: y0, t, C = symbols('y0 t C')
a = symbols('a:8')
y = Function('y')

[]: dgl = Eq(y(t).diff(t), y(t))
dgl

[]: ys = sum([a[i] * t**i for i in range(8)])
ys = ys.subs(a[0], 1) # y(0) = 1
ys

[]: gl = dgl.subs(y(t), ys).doit()
gl

[]: gl.coeff(t) # das klappt so nicht

[]: gls = gl.as_poly(t).all_coeffs()
gls

[]: ac = solve(gls[1:])
ac

[]: ac[a[0]] = 1 # wir raten das Bildungsgesetz der a's
acc = [ac[j] for j in a]
acc

[]: [acc[j] / acc[j + 1] for j in range(7)]

[]: [acc[j] - 1 / factorial(j) for j in range(8)]

[]: n = symbols('n')
yr = Sum(t**n / factorial(n), (n, 0, oo))
yr

[]: yr.doit()

11

1.3.5 Logistische Gleichung

einfaches Modell zur Beschreibung von Wachstum in einem Habitat mit beschränkten Resourcen

𝑦′(𝑡) = (1 − 𝑦(𝑡))𝑦(𝑡)

[]: y = Function('y')
t = symbols('t', real = True)
dgl = Eq(y(t).diff(t), (1-y(t))*y(t))
dgl

[]: sol = dsolve(dgl, y(t))
sol

[]: C1 = solve(sol, c1_s)
C1

[]: C1 = solve(sol, c1_s).pop().subs(t, t0)
C1

[]: sol.subs(c1_s, C1)

12

	Lektion 12
	Gradient, Hessematrix (Wiederholung)
	Beispiel
	Extrema (Wiederholung)
	Tangenten
	Gradient als Vektorfeld (quiver) Höhenlinien (contour)

	Differentialgleichungen
	erstes Beispiel
	Inhomogene lineare Differentialgleichung erster Ordnung
	Variation der Konstanten Formel
	Lösung mit einem Reihenansatz
	Logistische Gleichung

