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1 Lektion 12

import matplotlib.pyplot as plt
import numpy as np

from sympy import *
init_printing()

/matplotlib inline

1.1 Gradient, Hessematrix (Wiederholung)

X, y, z = symbols('x y z')
var = (x, y, 2)

f = Function('f')
f (*var)

f(z,y,2)



[4]: G = Matrix([f(*var)]).jacobian(var)
G
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[6]: H = hessian(f(*var), var)
H
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[6]: Matrix([f(*var)]) .hessian(var)

AttributeError Traceback (most recent call last)

Cell In[6], line 1
-———> 1 Matrix([f(*var)]) .hessian(var)

AttributeError: 'MutableDenseMatrix' object has no attribute 'hessian'

[7]: H = Matrix([f(*var)]).jacobian(var).jacobian(var)
H
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1.2 Beispiel

[8]: var = (x, y)
f =2 - xxx2 / 2 - yx*x2

f

(8]: 2
2
—— — 2
g U

[9]: fn = lambdify(var, f)
[10]: xn = np.linspace(-1.5, 1.5, 91)

yn = np.linspace(-1, 1, 61)

X, Y = np.meshgrid(xn, yn)
F = fn(X, Y)

[11]: figl = plt.figure()
axl = figl.add_subplot(projection='3d"')



axl.plot_surface(X, Y, F, alpha=.2, cmap=plt.cm.viridis)
axl.contour(X, Y, F)

[11]: <mpl_toolkits.mplot3d.art3d.QuadContourSet3D at 0x7fa825d4fe60>

T 2.0

1.2.1 Extrema (Wiederholung)

[12]: ext = solve(Matrix([f]).jacobian(var))

ext

[12]: {z:0, y:0}

[13]: H = hessian(f, var)
H
.



1.2.2 Tangenten

[15]: figld = plt.figure()
axld = figld.gca()

pot = {x: -.1, y: -.5}

def tangenteldx(f, pnt):
" Parametristerung der Tangeten an f in pnt in z-Richiung
t = np.linspace(-.5, .5)
return t, f.subs(pnt) + f.diff(x).subs(pnt) * (¢t - pnt[x])

axld.plot(xn, fn(xn, pnt[y]))
ax1ld.plot(*tangenteldx(f, pnt))

t = symbols('t')
fdxn = lambdify((x, y), f.diff(x))
xn_c = xn[2:-2:8]

axld.quiver(xn_c,

fn(xn_c, pntlyl),

1+ 0 % xn_c,

fdxn(xn_c, pntlyl),

angles='xy', scale_units='xy', scale=3, color='purple')
ax1ld.scatter(xn_c, fn(xn_c, pntlyl), c='red')

[15]: <matplotlib.collections.PathCollection at 0x7fa824bd2840>
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[16]: figl = plt.figure()
axl = figl.add_subplot(111l, projection='3d')
axl.plot_surface(X, Y, F, cmap=plt.cm.viridis, alpha=0.2)
axl.set_xlabel('x')
axl.set_ylabel('y')

vec = [1, 0]

def cut(pnt, f, vec, scale=1):

o

Schnittkurve durch Punkt pnt in Richtung vec

rr

tn = np.linspace(-1, 1) / scale
xn = pnt[x] + vec[0] * tn
yn = pnt[y] + vec[1] * tn
zn = lambdify((x, y), f)(xn, yn)

return xn, yn, zn

axl.scatter(pnt[x], pntlyl, f.subs(pnt), c='r', s=50)
axl.plot (*xcut(pnt, f, vec), 'r', lw=3)



def tangente2(pnt, f, vec, var, scale=1):
Tangente an Punkt (pnt, f(pnt)) in Richtung vec
als parametrische Kurve

1

t

fc

symbols('t")

(f + t_ *

(Matrix([£f]).jacobian(var).dot(Matrix(2, 1, vec)))) .subs(pnt)
fcn = lambdify(t_, fc)

tn = np.linspace(-1, 1) / scale

xn = pnt[x] + vec[0] * tn
yn = pntly]l + vec[l] * tn
zn = fcn(tn)

return xn, yn, zn

axl.plot (*tangente2(pnt, f, vec, var), 'c', lw=3)

[16]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa81ca69160>]
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1.2.3 Gradient als Vektorfeld (quiver) Hohenlinien (contour)

[18]: X, Y = np.meshgrid(xn, yn)
X ¢c = X[5:-2:7,5:-2:7]
Y c=Y[6:-2:7,5:-2:7]
grad = Matrix([f]).jacobian((x, y))
gradn = lambdify((x, y), grad)
GR = gradn(X_c, Y_c)[0]

[19]: fig = plt.figure()
ax = fig.gca()
ax.contour(X, Y, fn(X, Y), 10)
ax.set_aspect('equal', 'box')

ax.quiver(X_c, Y_c, GR[0], GR[1], angles='xy', scale_units='xy', scale=8,
wcolor="red');

t_, dx, dy = symbols('t dx dy')

fc = f.subs({x: x + t_ *x dx, y: y + t_ * dy})
dfc = diff(fc, t_)

dfcn = lambdify((x, y, dx, dy, t_), dfc)

fig = plt.figure()
ax = fig.add_subplot(111l, projection='3d")

ax.plot_surface(X, Y, fn(X, Y), cmap=plt.cm.viridis, alpha=.2)
zG = dfecn(X_c, Y_c, GRI[O, :, :], GR[1, :, :1, 0)
ax.quiver(X_c, Y_c, fn(X_c, Y_c), GR[O, :, :1 / 10,

GR[1, :, :]1 / 10, zG / 10)

pnt = {x: X_cl1, 71, y: Y_cl1, 71}
ax.plot (xtangente2(pnt, f, GR[:, 1, 7], var=var, scale=3), 'm', 1lw=3)
ax.plot (xcut(pnt, f, GR[:, 1, 7], scale=3), 'r', lw=1)

[19]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa8lacd0350>]






1.3 Differentialgleichungen
vgl. Analysis II

1.3.1 erstes Beispiel

[20] : | import matplotlib.pyplot as plt
import numpy as np
from sympy import *
init_printing()
/matplotlib notebook

Gesucht ist eine differenzierbare Funktion y : R — R mit

(e = y(0)

[21]: y = Function('y"')
t, tau = symbols('t tau', real = True)
dgl = Eq(y(t).diff(t), y(t))
dgl

[21]:
Sult) =yt

[22]: sol = dsolve(dgl, y(t))
sol

[22]: y(t) = Cyet

[23]: sol.subs(symbols('C1'), 1)

[23]: Y1) = et

[24]: c1_s=symbols('C1l')
Wir ergénzen die Differentialgleichunng mit einer Anfangsbedingung zur einem Anfangswertprob-
lem.

Gesucht ist y : R — R mit

Sult) =yt
y(te) =wo

[25]: tO, yO = symbols('t_0 y_0")
eq = sol.subs({t: t0}).subs({y(t0): y03})
eq

[25] : Yo = Cyeto



[26] :

[26] :

[27]:

[27]:

[28]:

[29] :

[29]:

[30]:

[30]:

[31]:

[31]:

[]:

sol = sol.subs(cl_s, solve(eq, cl_s)[0])
sol
y(t) = yoe'e to

checkodesol(dgl, sol)
(True, 0)

Das geht auch einfacher

aw = {y(t0): yO} # Anfangswerte (initial conditions)

dsolve(dgl, y(t), ics=aw)

y(t) = yoe'e o

1.3.2 Inhomogene lineare Differentialgleichung erster Ordnung

u'(t) = u(t) + sin(t)

u = Function('u')
t = symbols('t', real=True)
dgl = Eq(u(t).diff(t) - u(t) - sin(t), 0)

sol = dsolve(dgl, u(t))
sol
sin(t)  cos(t)

t) = Ce' — -
u(t) 1€ B D)
cl = solve(sol.subs(t, t0), ci1_s)[0]
cl

2sin (tg + T
(u(hﬁ‘+’w/(04>) e to
2

w = sol.subs(cl_s, cl)
w = w.rhs.subs(t0, 0)
W

1.3.3 Variation der Konstanten Formel

Die Losung von

%u@) = au(t) + g(t,u(t), u(0) = u

ist .
u(t) = e ug + / et g(,u(t))dr
0

10



Fiir das Beispiel oben ist a = 1 und g(¢,u) = sin(t). Das ergibt:
v = u(0) * exp(t) + integrate(exp(t - tau) * (sin(tau)), (tau, 0, t))
v

simplify(v - w)

1.3.4 Losung mit einem Reihenansatz
y'(t) =y(t), y(0)=1
mit einem Reihenansatz

yO, t, C = symbols('y0O t C')
a = symbols('a:8"')
y = Function('y')

dgl = Eq(y(t).diff(t), y(t))

dgl

ys = sum([a[i] * t**i for i in range(8)])
ys = ys.subs(al[0], 1) # y(0) = 1

ys

gl = dgl.subs(y(t), ys).doit()

gl

gl.coeff(t) # das klappt so nicht

gls = gl.as_poly(t).all_coeffs()
gls

ac = solve(gls[1:])

ac

aclal0]] = 1 # wir raten das Bildungsgesetz der a's
acc = [ac[j] for j in a]

acc

lacc[j] / accl[j + 1] for j in range(7)]
lacc[j] - 1 / factorial(j) for j in range(8)]
: n = symbols('n')

yr = Sum(t**n / factorial(n), (n, 0, 00))

yr

yr.doit()
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1.3.5 Logistische Gleichung

einfaches Modell zur Beschreibung von Wachstum in einem Habitat mit beschréinkten Resourcen

y'(t) = (1 —y@®)y(t)

[]1:

[]:

[]1:

[]:

[1:

y = Function('y')

t = symbols('t', real = True)

dgl = Eq(y(t).diff(t), (1-y(t))*y(t))
dgl

sol = dsolve(dgl, y(t))
sol

C1 = solve(sol, cl_s)
C1

C1
C1

solve(sol, cl_s).pop() .subs(t, t0)

sol.subs(cl_s, C1)
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