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1 Lektion 12
[1]: import matplotlib.pyplot as plt

import numpy as np
from sympy import *
init_printing()
%matplotlib inline

1.1 Gradient, Hessematrix (Wiederholung)

[2]: x, y, z = symbols('x y z')
var = (x, y, z)

[3]: f = Function('f')
f(*var)

[3]: 𝑓(𝑥, 𝑦, 𝑧)
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[4]: G = Matrix([f(*var)]).jacobian(var)
G

[4]: [ 𝜕
𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕

𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕
𝜕𝑧𝑓(𝑥, 𝑦, 𝑧)]

[5]: H = hessian(f(*var), var)
H

[5]:
⎡⎢⎢
⎣

𝜕2
𝜕𝑥2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧2 𝑓(𝑥, 𝑦, 𝑧)

⎤⎥⎥
⎦

[6]: Matrix([f(*var)]).hessian(var)

---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
Cell In[6], line 1
----> 1 Matrix([f(*var)]).hessian(var)

AttributeError: 'MutableDenseMatrix' object has no attribute 'hessian'

[7]: H = Matrix([f(*var)]).jacobian(var).jacobian(var)
H

[7]:
⎡⎢⎢
⎣

𝜕2
𝜕𝑥2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧2 𝑓(𝑥, 𝑦, 𝑧)

⎤⎥⎥
⎦

1.2 Beispiel

[8]: var = (x, y)
f = 2 - x**2 / 2 - y**2
f

[8]:
−𝑥2

2 − 𝑦2 + 2

[9]: fn = lambdify(var, f)

[10]: xn = np.linspace(-1.5, 1.5, 91)
yn = np.linspace(-1, 1, 61)
X, Y = np.meshgrid(xn, yn)
F = fn(X, Y)

[11]: fig1 = plt.figure()
ax1 = fig1.add_subplot(projection='3d')
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ax1.plot_surface(X, Y, F, alpha=.2, cmap=plt.cm.viridis)
ax1.contour(X, Y, F)

[11]: <mpl_toolkits.mplot3d.art3d.QuadContourSet3D at 0x7fa825d4fe60>

1.2.1 Extrema (Wiederholung)

[12]: ext = solve(Matrix([f]).jacobian(var))
ext

[12]: {𝑥 ∶ 0, 𝑦 ∶ 0}

[13]: H = hessian(f, var)
H

[13]:
[−1 0

0 −2]
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1.2.2 Tangenten

[15]: fig1d = plt.figure()
ax1d = fig1d.gca()

pnt = {x: -.1, y: -.5}

def tangente1dx(f, pnt):
""" Parametrisierung der Tangeten an f in pnt in x-Richtung
"""
t = np.linspace(-.5, .5)
return t, f.subs(pnt) + f.diff(x).subs(pnt) * (t - pnt[x])

ax1d.plot(xn, fn(xn, pnt[y]))
ax1d.plot(*tangente1dx(f, pnt))

t = symbols('t')
fdxn = lambdify((x, y), f.diff(x))
xn_c = xn[2:-2:8]

ax1d.quiver(xn_c,
fn(xn_c, pnt[y]),
1 + 0 * xn_c,
fdxn(xn_c, pnt[y]),
angles='xy', scale_units='xy', scale=3, color='purple')

ax1d.scatter(xn_c, fn(xn_c, pnt[y]), c='red')

[15]: <matplotlib.collections.PathCollection at 0x7fa824bd2840>
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[16]: fig1 = plt.figure()
ax1 = fig1.add_subplot(111, projection='3d')
ax1.plot_surface(X, Y, F, cmap=plt.cm.viridis, alpha=0.2)
ax1.set_xlabel('x')
ax1.set_ylabel('y')

vec = [1, 0]

def cut(pnt, f, vec, scale=1):
'''
Schnittkurve durch Punkt pnt in Richtung vec
'''
tn = np.linspace(-1, 1) / scale
xn = pnt[x] + vec[0] * tn
yn = pnt[y] + vec[1] * tn
zn = lambdify((x, y), f)(xn, yn)
return xn, yn, zn

ax1.scatter(pnt[x], pnt[y], f.subs(pnt), c='r', s=50)
ax1.plot(*cut(pnt, f, vec), 'r', lw=3)
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def tangente2(pnt, f, vec, var, scale=1):
'''
Tangente an Punkt (pnt, f(pnt)) in Richtung vec
als parametrische Kurve
'''
t_ = symbols('t')
fc = (f + t_ *

(Matrix([f]).jacobian(var).dot(Matrix(2, 1, vec)))).subs(pnt)
fcn = lambdify(t_, fc)

tn = np.linspace(-1, 1) / scale
xn = pnt[x] + vec[0] * tn
yn = pnt[y] + vec[1] * tn
zn = fcn(tn)

return xn, yn, zn

ax1.plot(*tangente2(pnt, f, vec, var), 'c', lw=3)

[16]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa81ca69160>]

6



1.2.3 Gradient als Vektorfeld (quiver) Höhenlinien (contour)

[18]: X, Y = np.meshgrid(xn, yn)
X_c = X[5:-2:7,5:-2:7]
Y_c = Y[5:-2:7,5:-2:7]
grad = Matrix([f]).jacobian((x, y))
gradn = lambdify((x, y), grad)
GR = gradn(X_c, Y_c)[0]

[19]: fig = plt.figure()
ax = fig.gca()
ax.contour(X, Y, fn(X, Y), 10)
ax.set_aspect('equal', 'box')

ax.quiver(X_c, Y_c, GR[0], GR[1], angles='xy', scale_units='xy', scale=8,␣
↪color='red');

t_, dx, dy = symbols('t dx dy')
fc = f.subs({x: x + t_ * dx, y: y + t_ * dy})
dfc = diff(fc, t_)
dfcn = lambdify((x, y, dx, dy, t_), dfc)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(X, Y, fn(X, Y), cmap=plt.cm.viridis, alpha=.2)

zG = dfcn(X_c, Y_c, GR[0, :, :], GR[1, :, :], 0)

ax.quiver(X_c, Y_c, fn(X_c, Y_c), GR[0, :, :] / 10,
GR[1, :, :] / 10, zG / 10)

pnt = {x: X_c[1, 7], y: Y_c[1, 7]}
ax.plot(*tangente2(pnt, f, GR[:, 1, 7], var=var, scale=3), 'm', lw=3)
ax.plot(*cut(pnt, f, GR[:, 1, 7], scale=3), 'r', lw=1)

[19]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa81acd0350>]
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1.3 Differentialgleichungen
vgl. Analysis II

1.3.1 erstes Beispiel

[20]: import matplotlib.pyplot as plt
import numpy as np
from sympy import *
init_printing()
%matplotlib notebook

Gesucht ist eine differenzierbare Funktion 𝑦 ∶ ℝ → ℝ mit

𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡).

[21]: y = Function('y')
t, tau = symbols('t tau', real = True)
dgl = Eq(y(t).diff(t), y(t))
dgl

[21]: 𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡)

[22]: sol = dsolve(dgl, y(t))
sol

[22]: 𝑦(𝑡) = 𝐶1𝑒𝑡

[23]: sol.subs(symbols('C1'), 1)

[23]: 𝑦(𝑡) = 𝑒𝑡

[24]: c1_s=symbols('C1')

Wir ergänzen die Differentialgleichunng mit einer Anfangsbedingung zur einem Anfangswertprob-
lem.

Gesucht ist 𝑦 ∶ ℝ → ℝ mit

𝑑
𝑑𝑡𝑦(𝑡) = 𝑦(𝑡)

𝑦(𝑡0) = 𝑦0

[25]: t0, y0 = symbols('t_0 y_0')
eq = sol.subs({t: t0}).subs({y(t0): y0})
eq

[25]: 𝑦0 = 𝐶1𝑒𝑡0
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[26]: sol = sol.subs(c1_s, solve(eq, c1_s)[0])
sol

[26]: 𝑦(𝑡) = 𝑦0𝑒𝑡𝑒−𝑡0

[27]: checkodesol(dgl, sol)

[27]: (True, 0)

Das geht auch einfacher

[28]: aw = {y(t0): y0} # Anfangswerte (initial conditions)

[29]: dsolve(dgl, y(t), ics=aw)

[29]: 𝑦(𝑡) = 𝑦0𝑒𝑡𝑒−𝑡0

1.3.2 Inhomogene lineare Differentialgleichung erster Ordnung

𝑢′(𝑡) = 𝑢(𝑡) + sin(𝑡)

[30]: u = Function('u')
t = symbols('t', real=True)
dgl = Eq(u(t).diff(t) - u(t) - sin(t), 0)
sol = dsolve(dgl, u(t))
sol

[30]:
𝑢(𝑡) = 𝐶1𝑒𝑡 − sin (𝑡)

2 − cos (𝑡)
2

[31]: c1 = solve(sol.subs(t, t0), c1_s)[0]
c1

[31]:
(𝑢(𝑡0) +

√
2 sin (𝑡0 + 𝜋

4 )
2 ) 𝑒−𝑡0

[ ]: w = sol.subs(c1_s, c1)
w = w.rhs.subs(t0, 0)
w

1.3.3 Variation der Konstanten Formel

Die Lösung von
𝑑
𝑑𝑡𝑢(𝑡) = 𝑎𝑢(𝑡) + 𝑔(𝑡, 𝑢(𝑡)), 𝑢(0) = 𝑢0

ist
𝑢(𝑡) = e𝑎𝑡𝑢0 + ∫

𝑡

0
e𝑎(𝑡−𝜏)𝑔(𝜏, 𝑢(𝜏))𝑑𝜏

10



Für das Beispiel oben ist 𝑎 = 1 und 𝑔(𝑡, 𝑢) = sin(𝑡). Das ergibt:

[ ]: v = u(0) * exp(t) + integrate(exp(t - tau) * (sin(tau)), (tau, 0, t))
v

[ ]: simplify(v - w)

1.3.4 Lösung mit einem Reihenansatz

𝑦′(𝑡) = 𝑦(𝑡), 𝑦(0) = 1
mit einem Reihenansatz

[ ]: y0, t, C = symbols('y0 t C')
a = symbols('a:8')
y = Function('y')

[ ]: dgl = Eq(y(t).diff(t), y(t))
dgl

[ ]: ys = sum([a[i] * t**i for i in range(8)])
ys = ys.subs(a[0], 1) # y(0) = 1
ys

[ ]: gl = dgl.subs(y(t), ys).doit()
gl

[ ]: gl.coeff(t) # das klappt so nicht

[ ]: gls = gl.as_poly(t).all_coeffs()
gls

[ ]: ac = solve(gls[1:])
ac

[ ]: ac[a[0]] = 1 # wir raten das Bildungsgesetz der a's
acc = [ac[j] for j in a]
acc

[ ]: [acc[j] / acc[j + 1] for j in range(7)]

[ ]: [acc[j] - 1 / factorial(j) for j in range(8)]

[ ]: n = symbols('n')
yr = Sum(t**n / factorial(n), (n, 0, oo))
yr

[ ]: yr.doit()
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1.3.5 Logistische Gleichung

einfaches Modell zur Beschreibung von Wachstum in einem Habitat mit beschränkten Resourcen

𝑦′(𝑡) = (1 − 𝑦(𝑡))𝑦(𝑡)

[ ]: y = Function('y')
t = symbols('t', real = True)
dgl = Eq(y(t).diff(t), (1-y(t))*y(t))
dgl

[ ]: sol = dsolve(dgl, y(t))
sol

[ ]: C1 = solve(sol, c1_s)
C1

[ ]: C1 = solve(sol, c1_s).pop().subs(t, t0)
C1

[ ]: sol.subs(c1_s, C1)
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