[1]:

[2]:

[3]:

[3]:

lektion12

January 14, 2026

Inhalt

1 Gradient, Hessematrix (Wiederholung)

2 Beispiel

2.1 Extrema (Wiederholung)

2.2 Tangenten

2.3 Gradient als Vektorfeld (quiver) Hohenlinien (contour)
3 Differentialgleichungen

3.1 erstes Beispiel

3.2 Inhomogene lineare Differentialgleichung erster Ordnung
3.3 Variation der Konstanten Formel

3.4 Losung mit einem Reihenansatz

3.5 Logistische Gleichung

1 Lektion 12

import matplotlib.pyplot as plt
import numpy as np

from sympy import *
init_printing()

/matplotlib inline

1.1 Gradient, Hessematrix (Wiederholung)

X, y, z = symbols('x y z')
var = (x, y, 2)

f = Function('f')
f (*var)

f(z,y,2)

[4]: G = Matrix([f(*var)]).jacobian(var)
G

2 fa) Bfwys) 2y 2)]

[6]: H = hessian(f(*var), var)
H

5]: 2
5] 3232]0(33 Y, 2) agawf(x Y, %) a(z[«)xf<$ Y, 2)

6y8mf($ Y,z) oy Zf(w Y,z) 8z8yf(m Y,z)
azarf(x Y,z) 8z8yf<x Y,z) 022 f(%%)

[6]: Matrix([f(*var)]) .hessian(var)

AttributeError Traceback (most recent call last)

Cell In[6], line 1
-———> 1 Matrix([f(*var)]) .hessian(var)

AttributeError: 'MutableDenseMatrix' object has no attribute 'hessian'

[7]: H = Matrix([f(*var)]).jacobian(var).jacobian(var)
H

71 2

LN (R

8383:'}0(3: Y,z) 8y2f(x7y7 Z) 8§ayf(x Y,z)
azamf(x Y, 2) 3zayf(x Y, 2) 3Z2f<xay7 z)

1.2 Beispiel

[8]: var = (x, y)
f =2 - xxx2 / 2 - yx*x2

f

(8]: 2
2
—— — 2
g U

[9]: fn = lambdify(var, f)
[10]: xn = np.linspace(-1.5, 1.5, 91)

yn = np.linspace(-1, 1, 61)

X, Y = np.meshgrid(xn, yn)
F = fn(X, Y)

[11]: figl = plt.figure()
axl = figl.add_subplot(projection='3d"')

axl.plot_surface(X, Y, F, alpha=.2, cmap=plt.cm.viridis)
axl.contour(X, Y, F)

[11]: <mpl_toolkits.mplot3d.art3d.QuadContourSet3D at 0x7fa825d4fe60>

T 2.0

1.2.1 Extrema (Wiederholung)

[12]: ext = solve(Matrix([f]).jacobian(var))

ext

[12]: {z:0, y:0}

[13]: H = hessian(f, var)
H
.

1.2.2 Tangenten

[15]: figld = plt.figure()
axld = figld.gca()

pot = {x: -.1, y: -.5}

def tangenteldx(f, pnt):
" Parametristerung der Tangeten an f in pnt in z-Richiung
t = np.linspace(-.5, .5)
return t, f.subs(pnt) + f.diff(x).subs(pnt) * (¢t - pnt[x])

axld.plot(xn, fn(xn, pnt[y]))
ax1ld.plot(*tangenteldx(f, pnt))

t = symbols('t')
fdxn = lambdify((x, y), f.diff(x))
xn_c = xn[2:-2:8]

axld.quiver(xn_c,

fn(xn_c, pntlyl),

1+ 0 % xn_c,

fdxn(xn_c, pntlyl),

angles='xy', scale_units='xy', scale=3, color='purple')
ax1ld.scatter(xn_c, fn(xn_c, pntlyl), c='red')

[15]: <matplotlib.collections.PathCollection at 0x7fa824bd2840>

1.8

1.6

1.4

1.2

1.0~

0.8

0.6

T T T
-1.5 -1.0 —-0.5 0.0 0.5 1.0 1.5

[16]: figl = plt.figure()
axl = figl.add_subplot(111l, projection='3d')
axl.plot_surface(X, Y, F, cmap=plt.cm.viridis, alpha=0.2)
axl.set_xlabel('x')
axl.set_ylabel('y')

vec = [1, 0]

def cut(pnt, f, vec, scale=1):

o

Schnittkurve durch Punkt pnt in Richtung vec

rr

tn = np.linspace(-1, 1) / scale
xn = pnt[x] + vec[0] * tn
yn = pnt[y] + vec[1] * tn
zn = lambdify((x, y), f)(xn, yn)

return xn, yn, zn

axl.scatter(pnt[x], pntlyl, f.subs(pnt), c='r', s=50)
axl.plot (*xcut(pnt, f, vec), 'r', lw=3)

def tangente2(pnt, f, vec, var, scale=1):
Tangente an Punkt (pnt, f(pnt)) in Richtung vec
als parametrische Kurve

1

t

fc

symbols('t")

(f + t_ *

(Matrix([£f]).jacobian(var).dot(Matrix(2, 1, vec)))) .subs(pnt)
fcn = lambdify(t_, fc)

tn = np.linspace(-1, 1) / scale

xn = pnt[x] + vec[0] * tn
yn = pntly]l + vec[l] * tn
zn = fcn(tn)

return xn, yn, zn

axl.plot (*tangente2(pnt, f, vec, var), 'c', lw=3)

[16]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa81ca69160>]

2.0

T 10

1.2.3 Gradient als Vektorfeld (quiver) Hohenlinien (contour)

[18]: X, Y = np.meshgrid(xn, yn)
X ¢c = X[5:-2:7,5:-2:7]
Y c=Y[6:-2:7,5:-2:7]
grad = Matrix([f]).jacobian((x, y))
gradn = lambdify((x, y), grad)
GR = gradn(X_c, Y_c)[0]

[19]: fig = plt.figure()
ax = fig.gca()
ax.contour(X, Y, fn(X, Y), 10)
ax.set_aspect('equal', 'box')

ax.quiver(X_c, Y_c, GR[0], GR[1], angles='xy', scale_units='xy', scale=8,
wcolor="red');

t_, dx, dy = symbols('t dx dy')

fc = f.subs({x: x + t_ *x dx, y: y + t_ * dy})
dfc = diff(fc, t_)

dfcn = lambdify((x, y, dx, dy, t_), dfc)

fig = plt.figure()
ax = fig.add_subplot(111l, projection='3d")

ax.plot_surface(X, Y, fn(X, Y), cmap=plt.cm.viridis, alpha=.2)
zG = dfecn(X_c, Y_c, GRI[O, :, :], GR[1, :, :1, 0)
ax.quiver(X_c, Y_c, fn(X_c, Y_c), GR[O, :, :1 / 10,

GR[1, :, :]1 / 10, zG / 10)

pnt = {x: X_cl1, 71, y: Y_cl1, 71}
ax.plot (xtangente2(pnt, f, GR[:, 1, 7], var=var, scale=3), 'm', 1lw=3)
ax.plot (xcut(pnt, f, GR[:, 1, 7], scale=3), 'r', lw=1)

[19]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x7fa8lacd0350>]

1.3 Differentialgleichungen
vgl. Analysis II

1.3.1 erstes Beispiel

[20] : | import matplotlib.pyplot as plt
import numpy as np
from sympy import *
init_printing()
/matplotlib notebook

Gesucht ist eine differenzierbare Funktion y : R — R mit

(e = y(0)

[21]: y = Function('y"')
t, tau = symbols('t tau', real = True)
dgl = Eq(y(t).diff(t), y(t))
dgl

[21]:
Sult) =yt

[22]: sol = dsolve(dgl, y(t))
sol

[22]: y(t) = Cyet

[23]: sol.subs(symbols('C1'), 1)

[23]: Y1) = et

[24]: c1_s=symbols('C1l')
Wir ergénzen die Differentialgleichunng mit einer Anfangsbedingung zur einem Anfangswertprob-
lem.

Gesucht ist y : R — R mit

Sult) =yt
y(te) =wo

[25]: tO, yO = symbols('t_0 y_0")
eq = sol.subs({t: t0}).subs({y(t0): y03})
eq

[25] : Yo = Cyeto

[26] :

[26] :

[27]:

[27]:

[28]:

[29] :

[29]:

[30]:

[30]:

[31]:

[31]:

[]:

sol = sol.subs(cl_s, solve(eq, cl_s)[0])
sol
y(t) = yoe'e to

checkodesol(dgl, sol)
(True, 0)

Das geht auch einfacher

aw = {y(t0): yO} # Anfangswerte (initial conditions)

dsolve(dgl, y(t), ics=aw)

y(t) = yoe'e o

1.3.2 Inhomogene lineare Differentialgleichung erster Ordnung

u'(t) = u(t) + sin(t)

u = Function('u')
t = symbols('t', real=True)
dgl = Eq(u(t).diff(t) - u(t) - sin(t), 0)

sol = dsolve(dgl, u(t))
sol
sin(t) cos(t)

t) = Ce' — -
u(t) 1€ B D)
cl = solve(sol.subs(t, t0), ci1_s)[0]
cl

2sin (tg + T
(u(hﬁ‘+’w/(04>) e to
2

w = sol.subs(cl_s, cl)
w = w.rhs.subs(t0, 0)
W

1.3.3 Variation der Konstanten Formel

Die Losung von

%u@) = au(t) + g(t,u(t), u(0) = u

ist .
u(t) = e ug + / et g(,u(t))dr
0

10

Fiir das Beispiel oben ist a = 1 und g(¢,u) = sin(t). Das ergibt:
v = u(0) * exp(t) + integrate(exp(t - tau) * (sin(tau)), (tau, 0, t))
v

simplify(v - w)

1.3.4 Losung mit einem Reihenansatz
y'(t) =y(t), y(0)=1
mit einem Reihenansatz

yO, t, C = symbols('y0O t C')
a = symbols('a:8"')
y = Function('y')

dgl = Eq(y(t).diff(t), y(t))

dgl

ys = sum([a[i] * t**i for i in range(8)])
ys = ys.subs(al[0], 1) # y(0) = 1

ys

gl = dgl.subs(y(t), ys).doit()

gl

gl.coeff(t) # das klappt so nicht

gls = gl.as_poly(t).all_coeffs()
gls

ac = solve(gls[1:])

ac

aclal0]] = 1 # wir raten das Bildungsgesetz der a's
acc = [ac[j] for j in a]

acc

lacc[j] / accl[j + 1] for j in range(7)]
lacc[j] - 1 / factorial(j) for j in range(8)]
: n = symbols('n')

yr = Sum(t**n / factorial(n), (n, 0, 00))

yr

yr.doit()

11

1.3.5 Logistische Gleichung

einfaches Modell zur Beschreibung von Wachstum in einem Habitat mit beschréinkten Resourcen

y'(t) = (1 —y@®)y(t)

[]1:

[]:

[]1:

[]:

[1:

y = Function('y')

t = symbols('t', real = True)

dgl = Eq(y(t).diff(t), (1-y(t))*y(t))
dgl

sol = dsolve(dgl, y(t))
sol

C1 = solve(sol, cl_s)
C1

C1
C1

solve(sol, cl_s).pop() .subs(t, t0)

sol.subs(cl_s, C1)

12

	Lektion 12
	Gradient, Hessematrix (Wiederholung)
	Beispiel
	Extrema (Wiederholung)
	Tangenten
	Gradient als Vektorfeld (quiver) Höhenlinien (contour)

	Differentialgleichungen
	erstes Beispiel
	Inhomogene lineare Differentialgleichung erster Ordnung
	Variation der Konstanten Formel
	Lösung mit einem Reihenansatz
	Logistische Gleichung

