[2]:

lektionl11

January 7, 2026

Table of Contents

1 Wiederholung und Ergénzung
1.1 Matrixoperationen
Eigenwerte, Eigenvektoren
Jordannormalform

Kreuzprodukt

Ot =W N

Berechung des Rangs

6 Normen

6.1 Vektornormen

6.2 Matrixnormen

7 Matrixzerlegungen (nicht besprochen)
7.1 LU Zerlegung

7.2 LDL- und Choleskyzerlegung
7.3 QR Zerlegung

8 Matrixfunktionen

8.1 Matrixwurzel

8.2 Matrixexponentialfunktion

9 Gradient

10 Hessematrix

11 Extrema und Sattelpunkte

1 Lektion 11

Lineare Algebra Teil 2

import matplotlib.pyplot as plt
import numpy as np
from sympy import *

init_printing()

X, y, z = symbols('x y z')
#imatplotlib notebook
%matplotlib inline

1.1 Wiederholung und Erginzung

[2]: = Matrix([1 ,-1, 1]1)

A%
A%

[2]: 1
1

[3]: A = Matrix(3, 3, range(9))
A

[3]: 0 1 2
{345]
6 7 8

[4]: | Axv, AQ@v # Matriz-Matrizprodukt (Vektoren sind Matrizen)

()

[6]: wv*v.T

[5]: 1 -1 1
{—1 1 -—1}
1 -1 1

1.1.1 Matrixoperationen

Addition und Skalarmultiplikation
[6]:|v + I % A[:,0]

[6]: 1
{_1 L 32-]
1461

[7]: a = symbols('a')
a*v

[7]: a
a

[8]: A - 2x(vxv.T)

5 27
4 9 6

[9]: matrix_multiply_elementwise(v*v.T, A) # Hadamard- oder Schurprodukt oder,
welementweises Produkt
(entspricht * in numpy)

-3 4 =5
6 -7 8

[10]: x = symbols('x0:10")
x #Tupel mit Symbolen

[10]:

(Tg, 1, Ty, Tz, Ty, Ty, Tg, Ty, Ty, Tg)
[11]: x[7]
[11]:

L7

[12]: M = Matrix(2, 5, x)

M
[12]: Lo L1 Lo T3z Ty
Ty Ty Ty Tg T
Das ist nicht schon.
[13]: a = symbols('a0:2_0:5')
A = Matrix(2, 5, a)
[14]: A
[14]:

Qoo Qo1 Qo2 Qo3 Qog
Ao Q11 Q12 Q13 G4

1.2 Eigenwerte, Eigenvektoren

[15]: A = Matrix(3, 3, lambda i, j : abs(i-j))
A[-1,0] = 0 # letzte Zeile, erste Spalte
A

1 01
010

[16]: A.eigenvals() # Eigenwerte mit threr algebraischen Vielfachheit

[16]:

[17]:

[17]:

[18]:

[18]:

[19]:

[19]:

[20] :

[20]:

[21]:

[21]:

[22]:

[22]:

[23]:

[23]:

5[V5T

R N VTS —
2V)

A eigenvals(simplify=True)

2 1 /3

V3 V57 * (_2+\gl) 9
31\ 3/ V57

P AL

2
3

+1

2
3

€’/§<2€’/§+(\/ﬁ+9)§> %(—8\3/5—(1—\/§¢)2(x/57+9)
01

3VVET+9 6(1—+/3i) VV57+9
A[-1, 0] = 1 # etwas ubersichtlicher

A.eigenvals()

evs = A.eigenvects()

) €’/§<—8€/§—(1+\/§z’)2(ﬁ+9)
. 6(1++/3i) V57 +9

evs # Tripel: Eigenwert, algebraische Vielfachheit, Basis des Eigenraums

Vi3

DN | =
N

(SRHIA

evs [0] [2] [0]

B

D = diag(x[ev_[0] for ev_ in evs])
T = Matrix([[ev_[2][0] for ev_ in evs]])
D, T
-1 0 0] Y138 1 1, Vi3
2 2 2 2
0 $-¥B o0 ,{1 1 1
N 1 1

simplify (A@T - T@D)

0 00
000
0 00

das geht auch kirzer
A .diagonalize()

N

N|—=

)

— =+

[24]:

[24] :

[25] :

[25] :

[26] :

[26] :

[27]:

[27]:

[28]:

Lk

N
N[

— =t

A = Matrix(3, 3, [-4,

A

—4 -2 -3
5 3 3
5 2 4

A.eigenvals()

{1:3)

A.eigenvects()

_ 2

i

1, 3, 1
0

1o
1

3
5

%
w

—1 0 0
1 /i3
N DRI Om
0 0 2+

-2, -3, 5, 3, 3, 5, 2, 41D

A.left_eigenvects() # linke Eigenvektoren

of, [t 0 1])]

A . diagonalize()

[(1, 3, [[1 1

MatrixError

Cell In[28],

line 1

-—--> 1 A.diagonalize()

Traceback (most recent call last)

File /local/home/schaedle/miniconda3/envs/compla24/1ib/python3.12/site-packages.
osympy/matrices/matrixbase.py:3341, in (self, reals_only
wsort, normalize)

3340 def diagonalize(self, reals_only=False, sort=False, normalize=False):
return _diagonalize(self, reals_only=reals_only, sort=sort,
normalize=normalize)

-> 3341
3342

File /local/home/schaedle/miniconda3/envs/compla24/1ib/python3.12/site-packages,

sympy/matrices/eigen.py:700, in (M, reals_only, sort, normalize)
696 is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
697 reals_only=reals_only)

699 if not is_diagonalizable:
raise MatrixError("Matrix is not diagonalizable")

-=> 700
702 if sort:
703 eigenvecs

sorted(eigenvecs, key=default_sort_key)

MatrixError: Matrix is not diagonalizable

[29]: evs = A.eigenvects() [0]# hier gibt es nur einen Eigenwert

T = Matrix([evs[2]])
D = diag(*([evs[0]] * len(evs[2])))
T, D

(T

[30]: AT -T@D

[30]: 0 0
0 0

1.3 Jordannormalform

[31]: = A.jordan_form()

T, J
Iy, J

31]:

S r5 1 =27 11 0
5 0 1],/010
50 0] [0oo01

[32]: T * J * T.inv() == A

O =

[32] : True

[33]: A@GT-T@Q@J
0 0O
0 00

1.4 Kreuzprodukt

[34]: 'w = Matrix(1, 3, [1, -2, 11)
v, W
[34]: 1
([—1], 1 —2 1])
1
[35]: z = v.cross(w)
z
[35]:

g

[36]: w.cross(wv)

[36]: [__1 0 1]

1.5 Berechung des Rangs

[37]: M = Matrix(3, 3, range(1l, 10))
M

{4) 6]
7 8 9

[38]: M.rank()

[38]: 5

[39]: x, y = symbols('x y')

X
M = Matrix(3, 2, [2*x+2, 2*y-2, 2*x+2, -2*y+2, y-1, x+1])
M

2r+2 2—2y

[39]: rx +2 2 2]
y—1 x+1

[40]: M.rank() # 2

[40] : 9

[41]: M1 = M.elementary_row_op('n->kn', row=2, k=2 * x + 2)
fur row=2 ersetze row-te Zeile durch k-fache der row-ten Zeil

M1
[41]: 2 + 2 %y — 2
22 + 2 92— 2y }
2x+2)(y—1) (z+1)(2x+2)

Das darf ich aber nur, wenn 2z + 2 # 0.

[42]: M2 = Ml.elementary_row_op('n->n+km', rowl=2, row2=0, k=1 - y).expand()
ersetze rowl-te Zeile durch Summe aus rowl-ter Zeile und k-fache der row2-ten

«Zeile
M2
(421 rog 4 2 2y —2
2r 42 2 —2y
0 222 + 4z — 2y% + 4y

[43]: M3 = M2.elementary_row_op('n->n+km', rowl=1, row2=0, k=-1)

M3
[43]: 2 42 2y — 2
0 4— 4y
0 222 + 4z — 2y% + 4y

[44]: M4 = M3.elementary_row_op('n->n+km', rowl=2, row2=1, k=-M3[2, 1] / M3[1, 11)
M4

0 4 —4y
0 0

Das darf ich nur fiir 4 — 4y # 0, weil ich durch diesen Wert geteilt habe.

[44] : r:c +2 2 2]

Bis jetzt gesehen:
Fir x # —1 und y # 1 ist der Rang gleich 2.

[45]: M.subs(x, -1)
i: 0 2—2y]
y—1 0

[46]: M.subs(y, 1)

2x + 2 0

[46]: raﬂrz 0]
0 T+ 1

[47]: M.subs({x: -1, y: 1})

[47] : 0 0
0 0

Rang(M) 0, z=—-1Ay=1,
an =
& 2, in allen anderen Féllen.

1.6 Normen
1.6.1 Vektornormen

[48] : = Matrix (1, 3, range(l, 4))

A%
A%

[48] : [1 9 3]

[49]: |v.norm() # euklidische Norm

[49] :

[50]:

V14

v.norm(1)

[50]:

[51]:

6

v.norm(oo0)

[51]:

[52]:

[52]:

[63]:

[53]:

[54]:

[54]:

[65]:

1.6.2 Matrixnormen

A
4 2 -3
5 3 3
5 2 4
A.norm()
3v13

Definition Die Frobenius Norm einer Matrix A, A.norm(), ist

1Allp = [> la; 2
ihj

sqrt(trace(A * A.H))

3v13

Definition Mit ||A]||, wird die 2-Norm von A bezeichnet

A .norm(2)

[55]:

[56]:

[56]

[67]:

V3363 + 58

Man kann zeigen, dass ||A||, die Wurzel des gréiten Eigenwerts von AH A ist.

" /3363 + 58

A

[57]:

1Al = sup

Max (* (A*A . H) .eigenvals() .keys())

[58]:

[58]:

[59]:

[59]:

[60]:

[60]:

[61]:

[61]:

[62]:

[62]:

[63]:

—4 -2 =3
5 3 3
5 2 4

A . norm(1) # Spaltensummennorm

14

A.norm(oo) # Zeilensummennorm

11

1.7 Matrixzerlegungen (nicht besprochen)

Dieser Abschnitt ist nur von Interesse, wenn Sie eine symbolische Implementierung der Algorithmen
aus CompLA brauchen. ### LU Zerlegung

vgl. CompLA VL9

Satz: Jede invertierbare n x n Matrix A besitzt eine Zerlegung der Form
PA=LU,

mit einer Permutationsmatrix P, einer unteren Dreiecksmatrix L und einer oberen Dreiecksmatrix
U.

Eine Zerlegung der Form A = LR existiert, falls die Matrix A ohne Zeilentausch in obere Dreiecks-
gestallt iiberfithrt werden kann, d.h. falls wihrend der Rechnung keine Division durch Null auftritt.

A = Matrix([[l, _19 2], [Os Os _1], [Oa 2, _1]])
A

|

L, U, perm = A.LUdecomposition() # Zeile 2 und 3 muessen vertauscht werden
L, U, perm

10 0] [1 —1 2
([0 1 0], [o 2 —1] 1, 2]])
001 [0 0 -1

P = eye(A.shape[0]) .permuteBkwd (perm)

O =

o |

—

| o
—

[

[an}
[\]

-1

P, L, U
100 [LOO] 1 —1 2
00 1/,]0 1 ofl, o 2 -1
010 (001 [0 0o -1
P@A == LQ@U

10

[63]:

[64]:

[64] :

[65]:

[65] :

[66]:

[66]:

[67]:

True

def element(i, j):

return 1/(i+j+1)
H = Matrix(3, 3, element) # Hilbertmatriz
H

|

1.7.1 LDL- und Choleskyzerlegung

[SUIENTEE T
[

WIEN = =
NP ST

vgl. CompLA Ubungen

Die LU-Zerlegung einer hermiteschen, positiv definiten Matrix A € C™*™ ist ohne Zeilentausch
berechenbar.

Satz: Jede hermitesche, positiv definite Matrix A € C™*™ besitzt eine Zerlegung der Form
A=LDLT,

wobei L eine untere Dreiecksmatrix mit Diagonaleintragen [;; = 1,4 = 0,...,n —1 und D eine
Diagonalmatrix mit positiven Eintrégen ist.

Vi
D2 .— \/a

Mit

n—1

erhélt man eine Zerlegung der Form
A=LDL" = (LD'?)(DY2L") = LL™
mit einer unteren Dreiecksmatrix L. Diese Zerlegung nennt man Cholesky Zerlegung .

HC = H.copy(O
HC[0,-1] = (1+I)/3
HC[-1,0] = (1-I)/3

HC[-1,-1] =1
HC
1 1 j
13 3+3
1107
121'% 4
373 1 |1

HC.is_hermitian
True

[simplify(re(1))>0 for 1 in HC.eigenvals()]

11

[67]: [True, True, True]

[68]: [expand(_) for _ in HC.LDLdecomposition()]

[68]: 1 0 0] [1L 0 0
: 1 0|, [0 & o
1 1 . 13

[69]: HC.cholesky() .expand()

)

[69]:

w
+ o
w
;
C
w

1.7.2 QR Zerlegung

vgl. CompLA VL 10

Die QR Zerlegung einer n x m Matrix $ A §$ ist eine Zerlegung
A=QR,

mit einer Matrix) mit orthonormalen Spalten und einer (verallgemeinerten) oberen Dreiecksmatrix

R.
Satz: Jede n x m Matrix A mit n > m und vollem Rang besitzt eine QR Zerlegung.

[70]: Q, R
Q, R

[70]: 1
0

[71]: Q.H@Q, QGR-A

(71l v 0 01 [0 0 0
([010],[000])
00 1] |o o0 0

[72]: B = Matrix(4, 3, [3, 1, 1, 1, 4, -1, 1, -1, 4, 1, 1, 11)

A .QRdecomposition()

= o O
c>|c>
[S—y
[|
——
O O =
OL\D‘
—
— o
—_
[|
v

B

1 —1
1 -1 4

1 1 1

[73]:Q, R = B.QRdecomposition()
Q, R

12

[73]: V3 3/837 _ 45/10382

2 358 10382 92 \/g 3 7V3
V3 41/537 13110382 6 6

6 1074 5191 0 V537 121537
V3 19537 424/10382 |’ 6 1074

6 1074 5191 0 0 5110382
V3 5v/537 25110382 179

6 1074 10382

[74]: Q.TeQ, QGR-B

100
01 0],
00 1

1.8 Matrixfunktionen

[74] :

o O O O
o O O O
o O O O

1.8.1 Matrixwurzel

[4]: B = Matrix(3, 3, [4, 1, 1, 1, 4, -1, 1, -1, 4]1)
B

[4]: 41 1
{1) _1]
1 -1 4

[76]1: | sqrtB = Bx*(S(1)/2)

sqrtB
[76]:
e
—3 T3 T3 Ty 3 Ty
[77]: erg = sqrtB @ sqrtB - B
simplify(erg)
(7715 r0 0 0
{0 0 O}
0 00

1.8.2 Matrixexponentialfunktion

Die Exponentialfunktion z - e? ist als Reihe definiert

oo n

z
e? = E —.
n!

n=0

Setzt man hier formal fiir z eine Matrix ein, so erhédlt man die Matrixexponentilafunktion (vgl.
Ana II).

[78]: exp(B)

[78]:

13

[5]:

[5]:

[80]:

[80]:

[81]:

[81]:

[82]:

[83]:

[83]:

[84]:

[84] :

[85]:

[85]:

e? 2e® e ed e? e’

<+ —e 42 —o 4o

AN B S
3 3 3 3 3 3
e? ed ed e? e? 2e®
3 3 3 3 3 3

t = symbols('t')
diff (exp(t*B), t) - Bxexp(t*B)

0 00
0 00
0 00

exp erfiilltO exp(B) exp(—B) = I
exp(t*B) * exp(-t*B)

2t —5t 5t 2t

255+ 5) (5 %)+

(—55, v) (g) (s i)
(_53 + %)(_%?‘%%?>‘%<_ﬁ3 + %)(

e—2t 2¢-5t) (265t e2t

3 T gt 32t+ 3 5t 5t 2t 2t

et e 2e” et et _ e

) (g) (5 -5) (5
2e 5P\ (et ggi) (__e’

+ 3)(3 3 3 +

25515
3
285t
3

+20) + (5

B.applyfunc(exp) # eintragsweise Anwendung der exp Funktion

e e e
e et et
e el et

1.9 Gradient

X, ¥, z = symbols('x y z')
var = (x, y, 2)

f = exp(x**2 + y**2 + z*%2)
f

ew2+y2+22

gr = Matrix([[f.diff(t) for t in varl])
gr

2 2 2 2 2 2 2 2 2
[2336” +y“+z 2ye”® Ty +2% 9 ety i+]

J = Matrix([f]).jacobian(var)
J

2 2 2 2 2 2 2 2 2
[Qxex +y“+z 2ye® Ty +27 9 ety +z]

14

[86]:

[86]:

[87]:

[87]:

[88]:

[88]:

[89]:

[89]:

[90]:

[90] :

[91]:

[91]:

[124]:

[125]:

[126] :

1.10 Hessematrix

= J.jacobian(var)

H
2 2 2 2 2 2 2 2 2
Qe Ty t+z + 2T Y 2 4dzye® Ty +z
24024 52 24024 52 24024 52
43:ye‘T +y“+z 4y2em +y“+z + 2e% Ty +z
Ay ze® ity +2? 4yzem2+y2+z2

hessian(f, var)

4$2612+y2+22 + 2ex2+y2+z2 41’yew2+y2+22
24,24 ,2 24,24 ,2 24,24 .2
4ZL‘y€w +y“+z 4y2eaz +y +z + 2¢* +y“+z

Ay per ity +2? 4yz€z2+y2+22

hessian(f, var) - H

0 0O

0 0O

0 0O

f = Function('f')
f (*var)
f(z,y,2)

hessian(f(x, y, z), var)

8;2 f(l‘ Y,z) 638wf<$ Y,z) aiawf<$ Y,z)
82§wf<x Y,z) 8y2 f(xayv Z) a‘zayf(x Y,z)
afaxf(x Y, z) a?ayf(x Y, z) 3Z2f(m7y7 z)

Qg ze® Y+
4yzez2+y2+zz

47207 +yP+2° + 9ty +22

2,,2,.,2
A ze® +y“+z

4226m2+y2+z2 + 2€w2+y2+22

f = xxk4d / 2 - xx*k2 % yx*k2 — yx*x4 / 4 + xx*3 - 2 *x X * ykk2

f.factor()

20t + 423 — 42%y? — S8xy? — ¢t

4
fn = lambdify((x, y), f)
gn = np.linspace(-2, 2, 500)

X, Y = np.meshgrid(gn ,gn)
F=1fnX, Y)

fig = plt.figure(6)
fig.clf(Q)
= fig.add_subplot(111l, projection='3d')

ax.plot_surface(X, Y, F, lw=1, cmap=plt.cm.viridis);

ax.set_zlim(-25, 25);

15

[127] :

[120]:

[120] :

ax.contour(X, Y, F, [-10, -1, 0, 1, 10]Jexp() , offset=-25, cmap=plt.cm.

viridis) ;

fig = plt.figure(7)
ax = fig.gca()

cs = ax.contour(X, Y, F, [-3, -1, -.6, -.4, O,

plt.clabel(cs)

<a list of 18 text.Text objects>

16

.5, 1, 4], cmap=plt.cm.viridis)

[97]:

[98]:

[99]:

[99]:

[100]:

[100] :

15 —__ __._"_ll_ﬁ - / A\ E
0o
e -~
1.0 1
0.5 0
0.0 - H
o
o
—0.5
g
-1.04
=
i ‘-..G

Vi

A
<

&

1/

/\

[

&

AN

S A
— ~J o /// o
—1.51 'ﬂx\l?\ : T : /I -
=2.0 -1.5 -1.0 —0.5 0.0

ax.contour?

1.11 Extrema und Sattelpunkte

ext = solve(Matrix([£f]).jacobian((x, y)))

ext # Liste von Losungen jeweils als Dictionary

{_ 3 .0} (10, y:0) 5 V3 11 V33 5 V33
T YU W Y ATy T VT e T T ()Y T 12

H = hessian(f, (%, y))
H

[63:2 + 62 — 2y?

—4xy — 4y
—dzy — 4y

—2x% — 4x — 3y?

Hurwitz Kriterium

Eine Matrix A ist genau dann positiv definit, falls alle Hauptminoren von A positiv sind.

Eine Matrix A ist genau dann negativ definit, falls —A positiv definit ist.

17

[101]:

HO = H.subs(ext[0])
HO, (HO.det() > 0) & (HO[0,0] > 0)

[1011: /ro
(6 3])
0 3

[265] :

[299] :

for ex in ext:

HO = H.subs(ex)

stri = £' bei x={ex[x]} \t y={ex[yl}'

if (HO.det() > 0) & (HO[O, 0] > 0): # H 4ist hier positiv definit
print('Minimum \t' + stri)

elif ((-HO).det() > 0) & (-HO[O, 0] > 0): # -H 4ist hier positiv definit
print('Maximum \t' + stri)

elif (HO.det() < 0): #Spezialfall fur reellwertige Funktionen ueber R 2
print ('Sattelpunkt\t' + stri)

else:
print('Keine Aussage\t' + stri + '\t mit Hilfe der Hessematrix;

~moeglich')

Minimum bei x=-3/2 y=0

Keine Aussage bei x=0 y=0 mit Hilfe der Hessematrix moeglich
Sattelpunkt bei x=-5/4 - sqrt(33)/12 y=-sqrt(17/12 - sqrt(33)/12)
Sattelpunkt bei x=-5/4 - sqrt(33)/12 y=sqrt(17/12 - sqrt(33)/12)
Maximum bei x=-5/4 + sqrt(33)/12 y=-sqrt(sqrt(33)/12 + 17/12)
Maximum bei x=-5/4 + sqrt(33)/12 y=sqrt(sqrt(33)/12 + 17/12)

n = len(ext)
extd = np.empty(n,
dtype=[('x', float), ('y', float), ('f', float), ('size', int),
('color', str, 7), ('type', str, 7)1) # structured,
~datatype
for i, ex in enumerate(ext):
extd[i] ['x'] = float(ex[x].n())
extd[i]['y'] = float(ex[y]l.n())
extd[i]['f'] = float(f.subs(ex).n())
HO = H.subs(ex)
if (HO.det() > 0) & (HO[O, O] > 0):
extd[i] ['color'] = 'orange'; extd[i]['size'] = 49
extd[i] ['type'] = 'Minimum'
elif ((-HO).det() > 0) & (-HO[O, 0] > 0):

extd[i] ['color'] = 'crimson'; extd[i]l['size'] = 50
extd[i] ['type'] = 'Maximum'

elif (HO.det() < 0):
extd[i] ['color'] = 'lime'; extd[i]['size'] = 51
extd[i] ['type'] = 'Sattel'

else:
extd[i] ['color']

'black'; extd[i]['size'] = 52

18

extd[i] ['type']l = '?!
[300] : extd
[300]: array([5 , O. , —0.84375 , 49, 'orange', 'Minimum'),

, 0. , 0. , 52, 'black', '?'),
72871355, -0.96847979, -0.48081761, 51, 'lime', 'Sattel'),
72871355, 0.96847979, -0.48081761, 51, 'lime', 'Sattel'),
77128645, -1.37672809, 0.61623428, 50, 'crimson', 'Maximum'),

(-0.77128645, 1.37672809, 0.61623428, 50, 'crimson', 'Maximum')],
dtype=[('x', '<£8'), ('y', '<f8'), ('f', '<f8'), ('size', '<i8'),
('color', '<U7'), ('type', '<U7')])

(-1.
(0.
(-1.
(-1.
(-0.

[301]: from matplotlib.colors import Normalize

xn = np.linspace(-2.2, 1)

yn = np.linspace(-1.7, 1.7)

X, Y = np.meshgrid(xn, yn)

F=1fn(X, Y)

fig = plt.figure()

ax = fig.add_subplot(111l, projection='3d"')

ax.plot_surface(X, Y, F, 1lw=0, cmap=plt.cm.viridis, alpha=0.4, vmin=-1, vmax=1)
ax.scatter(extd['x'], extd['y'], extd['f'], s=50, c=extd['color'])
ax.set_zlim(-2, 1);

19

[312]: import matplotlib
fig = plt.figure()
ax = fig.add_subplot(111)
ax.contour(X, Y, F, 50, cmap=plt.cm.viridis, vmin=-1, vmax=1)
scatter = ax.scatter(extd['x'], extd['y'], s=extd['size'], c=extd['color'])

handles, _ = scatter.legend_elements(prop='sizes') # leider kénnen wir nicht,
wauf dte 'colors' zugreifen

Trick um Legende zu beschriften
sizes, index = np.unique(extd['size'], return_index=True)
for i, ind in enumerate(index):

handles[i] .set_color(extd['color'] [ind])

ax.legend(handles, extd['type'][index]);

Minimum
Maximum
Sattel

1.5+

1.0

[1:

20

	Lektion 11
	Wiederholung und Ergänzung
	Matrixoperationen

	Eigenwerte, Eigenvektoren
	Jordannormalform
	Kreuzprodukt
	Berechung des Rangs
	Normen
	Vektornormen
	Matrixnormen

	Matrixzerlegungen (nicht besprochen)
	LDL- und Choleskyzerlegung
	QR Zerlegung

	Matrixfunktionen
	Matrixwurzel
	Matrixexponentialfunktion

	Gradient
	Hessematrix
	Extrema und Sattelpunkte

