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1 Lektion 11
Lineare Algebra Teil 2

[2]: import matplotlib.pyplot as plt
import numpy as np
from sympy import *
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init_printing()
x, y, z = symbols('x y z')
#%matplotlib notebook
%matplotlib inline

1.1 Wiederholung und Ergänzung

[2]: v = Matrix([1 ,-1, 1])
v

[2]:
⎡⎢
⎣

1
−1
1

⎤⎥
⎦

[3]: A = Matrix(3, 3, range(9))
A

[3]:
⎡⎢
⎣

0 1 2
3 4 5
6 7 8

⎤⎥
⎦

[4]: A*v, A@v # Matrix-Matrixprodukt (Vektoren sind Matrizen)

[4]:
⎛⎜
⎝

⎡⎢
⎣

1
4
7
⎤⎥
⎦

, ⎡⎢
⎣

1
4
7
⎤⎥
⎦

⎞⎟
⎠

[5]: v*v.T

[5]:
⎡⎢
⎣

1 −1 1
−1 1 −1
1 −1 1

⎤⎥
⎦

1.1.1 Matrixoperationen

Addition und Skalarmultiplikation
[6]: v + I * A[:,0]

[6]:
⎡⎢
⎣

1
−1 + 3𝑖
1 + 6𝑖

⎤⎥
⎦

[7]: a = symbols('a')
a*v

[7]:
⎡⎢
⎣

𝑎
−𝑎
𝑎

⎤⎥
⎦
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[8]: A - 2*(v*v.T)

[8]:
⎡⎢
⎣

−2 3 0
5 2 7
4 9 6

⎤⎥
⎦

[9]: matrix_multiply_elementwise(v*v.T, A) # Hadamard- oder Schurprodukt oder␣
↪elementweises Produkt

# (entspricht * in numpy)

[9]:
⎡⎢
⎣

0 −1 2
−3 4 −5
6 −7 8

⎤⎥
⎦

[10]: x = symbols('x0:10')
x #Tupel mit Symbolen

[10]: (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9)

[11]: x[7]

[11]: 𝑥7

[12]: M = Matrix(2, 5, x)
M

[12]:
[𝑥0 𝑥1 𝑥2 𝑥3 𝑥4
𝑥5 𝑥6 𝑥7 𝑥8 𝑥9

]

Das ist nicht schön.

[13]: a = symbols('a0:2_0:5')
A = Matrix(2, 5, a)

[14]: A

[14]:
[𝑎00 𝑎01 𝑎02 𝑎03 𝑎04
𝑎10 𝑎11 𝑎12 𝑎13 𝑎14

]

1.2 Eigenwerte, Eigenvektoren

[15]: A = Matrix(3, 3, lambda i, j : abs(i-j))
A[-1,0] = 0 # letzte Zeile, erste Spalte
A

[15]:
⎡⎢
⎣

0 1 2
1 0 1
0 1 0

⎤⎥
⎦

[16]: A.eigenvals() # Eigenwerte mit ihrer algebraischen Vielfachheit
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[16]: ⎧{
⎨{⎩

(−1
2 −

√
3𝑖
2 ) 3√

√
57
9 + 1 + 2

3 (−1
2 −

√
3𝑖
2 ) 3√

√
57
9 + 1

∶ 1, 2
3 (−1

2 +
√

3𝑖
2 ) 3√

√
57
9 + 1

+ (−1
2 +

√
3𝑖
2 ) 3√

√
57
9 + 1 ∶ 1, 2

3 3√
√

57
9 + 1

+ 3√
√

57
9 + 1 ∶ 1

⎫}
⎬}⎭

[17]: A.eigenvals(simplify=True)

[17]: ⎧{
⎨{⎩

3√3 (2 3√3 + (
√

57 + 9)
2
3 )

3 3√√
57 + 9

∶ 1,
3√3 (−8 3√3 − (1 −

√
3𝑖)2 (

√
57 + 9)

2
3 )

6 (1 −
√

3𝑖) 3√√
57 + 9

∶ 1,
3√3 (−8 3√3 − (1 +

√
3𝑖)2 (

√
57 + 9)

2
3 )

6 (1 +
√

3𝑖) 3√√
57 + 9

∶ 1
⎫}
⎬}⎭

[18]: A[-1, 0] = 1 # etwas übersichtlicher
A.eigenvals()

[18]:
{−1 ∶ 1, 1

2 −
√

13
2 ∶ 1, 1

2 +
√

13
2 ∶ 1}

[19]: evs = A.eigenvects()
evs # Tripel: Eigenwert, algebraische Vielfachheit, Basis des Eigenraums

[19]:
⎡⎢
⎣

⎛⎜
⎝

−1, 1, ⎡⎢
⎣

⎡⎢
⎣

−1
1
0

⎤⎥
⎦

⎤⎥
⎦

⎞⎟
⎠

, ⎛⎜⎜
⎝

1
2 −

√
13
2 , 1, ⎡⎢

⎣
⎡⎢
⎣

−
√

13
2 − 1

2
1
1

⎤⎥
⎦

⎤⎥
⎦

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

1
2 +

√
13
2 , 1, ⎡⎢

⎣
⎡⎢
⎣

−1
2 +

√
13
2

1
1

⎤⎥
⎦

⎤⎥
⎦

⎞⎟⎟
⎠

⎤⎥
⎦

[20]: evs[0][2][0]

[20]:
⎡⎢
⎣

−1
1
0

⎤⎥
⎦

[21]: D = diag(*[ev_[0] for ev_ in evs])
T = Matrix([[ev_[2][0] for ev_ in evs]])
D, T

[21]:
⎛⎜⎜
⎝

⎡
⎢
⎣

−1 0 0
0 1

2 −
√

13
2 0

0 0 1
2 +

√
13
2

⎤
⎥
⎦

, ⎡⎢
⎣

−1 −
√

13
2 − 1

2 −1
2 +

√
13
2

1 1 1
0 1 1

⎤⎥
⎦

⎞⎟⎟
⎠

[22]: simplify(A@T - T@D)

[22]:
⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦

[23]: # das geht auch kürzer
A.diagonalize()

[23]:
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⎛⎜⎜
⎝

⎡⎢
⎣

−1 −
√

13
2 − 1

2 −1
2 +

√
13
2

1 1 1
0 1 1

⎤⎥
⎦

, ⎡
⎢
⎣

−1 0 0
0 1

2 −
√

13
2 0

0 0 1
2 +

√
13
2

⎤
⎥
⎦

⎞⎟⎟
⎠

[24]: A = Matrix(3, 3, [-4, -2, -3, 5, 3, 3, 5, 2, 4])
A

[24]:
⎡⎢
⎣

−4 −2 −3
5 3 3
5 2 4

⎤⎥
⎦

[25]: A.eigenvals()

[25]: {1 ∶ 3}

[26]: A.eigenvects()

[26]:
⎡⎢
⎣

⎛⎜
⎝

1, 3, ⎡⎢
⎣

⎡⎢
⎣

−2
5

1
0

⎤⎥
⎦

, ⎡⎢
⎣

−3
5

0
1

⎤⎥
⎦

⎤⎥
⎦

⎞⎟
⎠

⎤⎥
⎦

[27]: A.left_eigenvects() # linke Eigenvektoren

[27]: [(1, 3, [[1 1 0] , [1 0 1]])]

[28]: A.diagonalize()

---------------------------------------------------------------------------
MatrixError Traceback (most recent call last)
Cell In[28], line 1
----> 1 A.diagonalize()

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/matrices/matrixbase.py:3341, in MatrixBase.diagonalize(self, reals_only,␣
↪sort, normalize)

3340 def diagonalize(self, reals_only=False, sort=False, normalize=False):
-> 3341 return _diagonalize(self, reals_only=reals_only, sort=sort,

3342 normalize=normalize)

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/matrices/eigen.py:700, in _diagonalize(M, reals_only, sort, normalize)

696 is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M,
697 reals_only=reals_only)
699 if not is_diagonalizable:

--> 700 raise MatrixError("Matrix is not diagonalizable")
702 if sort:
703 eigenvecs = sorted(eigenvecs, key=default_sort_key)
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MatrixError: Matrix is not diagonalizable

[29]: evs = A.eigenvects()[0]# hier gibt es nur einen Eigenwert
T = Matrix([evs[2]])
D = diag(*([evs[0]] * len(evs[2])))
T, D

[29]:
⎛⎜
⎝

⎡⎢
⎣

−2
5 −3

5
1 0
0 1

⎤⎥
⎦

, [1 0
0 1]⎞⎟

⎠
[30]: A @ T - T @ D

[30]:
⎡⎢
⎣

0 0
0 0
0 0

⎤⎥
⎦

1.3 Jordannormalform
[31]: T, J = A.jordan_form()

T, J

[31]:
⎛⎜
⎝

⎡⎢
⎣

−5 1 −2
5

5 0 1
5 0 0

⎤⎥
⎦

, ⎡⎢
⎣

1 1 0
0 1 0
0 0 1

⎤⎥
⎦

⎞⎟
⎠

[32]: T * J * T.inv() == A

[32]: True

[33]: A @ T - T @ J

[33]:
⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦

1.4 Kreuzprodukt

[34]: w = Matrix(1, 3, [1, -2, 1])
v, w

[34]:
⎛⎜
⎝

⎡⎢
⎣

1
−1
1

⎤⎥
⎦

, [1 −2 1]⎞⎟
⎠

[35]: z = v.cross(w)
z

[35]:
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⎡⎢
⎣

1
0

−1
⎤⎥
⎦

[36]: w.cross(v)

[36]: [−1 0 1]

1.5 Berechung des Rangs

[37]: M = Matrix(3, 3, range(1, 10))
M

[37]:
⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

[38]: M.rank()

[38]: 2
[39]: x, y = symbols('x y')

M = Matrix(3, 2, [2*x+2, 2*y-2, 2*x+2, -2*y+2, y-1, x+1])
M

[39]:
⎡⎢
⎣

2𝑥 + 2 2𝑦 − 2
2𝑥 + 2 2 − 2𝑦
𝑦 − 1 𝑥 + 1

⎤⎥
⎦

[40]: M.rank() # ?

[40]: 2
[41]: M1 = M.elementary_row_op('n->kn', row=2, k=2 * x + 2)

# für row=2 ersetze row-te Zeile durch k-fache der row-ten Zeil
M1

[41]:
⎡⎢
⎣

2𝑥 + 2 2𝑦 − 2
2𝑥 + 2 2 − 2𝑦

(2𝑥 + 2) (𝑦 − 1) (𝑥 + 1) (2𝑥 + 2)
⎤⎥
⎦

Das darf ich aber nur, wenn 2𝑥 + 2 ≠ 0.

[42]: M2 = M1.elementary_row_op('n->n+km', row1=2, row2=0, k=1 - y).expand()
# ersetze row1-te Zeile durch Summe aus row1-ter Zeile und k-fache der row2-ten␣

↪Zeile
M2

[42]:
⎡⎢
⎣

2𝑥 + 2 2𝑦 − 2
2𝑥 + 2 2 − 2𝑦

0 2𝑥2 + 4𝑥 − 2𝑦2 + 4𝑦
⎤⎥
⎦
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[43]: M3 = M2.elementary_row_op('n->n+km', row1=1, row2=0, k=-1)
M3

[43]:
⎡⎢
⎣

2𝑥 + 2 2𝑦 − 2
0 4 − 4𝑦
0 2𝑥2 + 4𝑥 − 2𝑦2 + 4𝑦

⎤⎥
⎦

[44]: M4 = M3.elementary_row_op('n->n+km', row1=2, row2=1, k=-M3[2, 1] / M3[1, 1])
M4

[44]:
⎡⎢
⎣

2𝑥 + 2 2𝑦 − 2
0 4 − 4𝑦
0 0

⎤⎥
⎦

Das darf ich nur für 4 − 4𝑦 ≠ 0, weil ich durch diesen Wert geteilt habe.

Bis jetzt gesehen:

Für 𝑥 ≠ −1 und 𝑦 ≠ 1 ist der Rang gleich 2.

[45]: M.subs(x, -1)

[45]:
⎡⎢
⎣

0 2𝑦 − 2
0 2 − 2𝑦

𝑦 − 1 0
⎤⎥
⎦

[46]: M.subs(y, 1)

[46]:
⎡⎢
⎣

2𝑥 + 2 0
2𝑥 + 2 0

0 𝑥 + 1
⎤⎥
⎦

[47]: M.subs({x: -1, y: 1})

[47]:
⎡⎢
⎣

0 0
0 0
0 0

⎤⎥
⎦

Rang(𝑀) = {0, 𝑥 = −1 ∧ 𝑦 = 1,
2, in allen anderen Fällen.

1.6 Normen
1.6.1 Vektornormen

[48]: v = Matrix(1, 3, range(1, 4))
v

[48]: [1 2 3]

[49]: v.norm() # euklidische Norm
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[49]: √
14

[50]: v.norm(1)

[50]: 6
[51]: v.norm(oo)

[51]: 3

1.6.2 Matrixnormen

[52]: A

[52]:
⎡⎢
⎣

−4 −2 −3
5 3 3
5 2 4

⎤⎥
⎦

[53]: A.norm()

[53]: 3
√

13
Definition Die Frobenius Norm einer Matrix 𝐴, A.norm(), ist

||𝐴||𝐹 = √∑
𝑖,𝑗

|𝑎𝑖,𝑗|2

[54]: sqrt(trace(A * A.H))

[54]: 3
√

13
Definition Mit ||𝐴||2 wird die 2-Norm von A bezeichnet

||𝐴||2 = sup
𝑥≠0

‖𝐴𝑥‖2
‖𝑥‖2

[55]: A.norm(2)

[55]: √√
3363 + 58

Man kann zeigen, dass ||𝐴||2 die Wurzel des größten Eigenwerts von 𝐴𝐻𝐴 ist.

[56]: Max(*(A*A.H).eigenvals().keys())

[56]: √
3363 + 58

[57]: A

[57]:
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⎡⎢
⎣

−4 −2 −3
5 3 3
5 2 4

⎤⎥
⎦

[58]: A.norm(1) # Spaltensummennorm

[58]: 14
[59]: A.norm(oo) # Zeilensummennorm

[59]: 11

1.7 Matrixzerlegungen (nicht besprochen)
Dieser Abschnitt ist nur von Interesse, wenn Sie eine symbolische Implementierung der Algorithmen
aus CompLA brauchen. ### LU Zerlegung

vgl. CompLA VL9

Satz: Jede invertierbare 𝑛 × 𝑛 Matrix 𝐴 besitzt eine Zerlegung der Form

𝑃𝐴 = 𝐿𝑈,

mit einer Permutationsmatrix 𝑃 , einer unteren Dreiecksmatrix 𝐿 und einer oberen Dreiecksmatrix
𝑈 .

Eine Zerlegung der Form 𝐴 = 𝐿𝑅 existiert, falls die Matrix 𝐴 ohne Zeilentausch in obere Dreiecks-
gestallt überführt werden kann, d.h. falls während der Rechnung keine Division durch Null auftritt.

[60]: A = Matrix([[1, -1, 2], [0, 0, -1], [0, 2, -1]])
A

[60]:
⎡⎢
⎣

1 −1 2
0 0 −1
0 2 −1

⎤⎥
⎦

[61]: L, U, perm = A.LUdecomposition() # Zeile 2 und 3 muessen vertauscht werden
L, U, perm

[61]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

1 −1 2
0 2 −1
0 0 −1

⎤⎥
⎦

, [[1, 2]]⎞⎟
⎠

[62]: P = eye(A.shape[0]).permuteBkwd(perm)
P, L, U

[62]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 0 1
0 1 0

⎤⎥
⎦

, ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

1 −1 2
0 2 −1
0 0 −1

⎤⎥
⎦

⎞⎟
⎠

[63]: P@A == L@U
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[63]: True

[64]: def element(i, j):
return 1/(i+j+1)

H = Matrix(3, 3, element) # Hilbertmatrix
H

[64]:
⎡⎢
⎣

1 1
2

1
31

2
1
3

1
41

3
1
4

1
5

⎤⎥
⎦

1.7.1 LDL- und Choleskyzerlegung

vgl. CompLA Übungen

Die 𝐿𝑈 -Zerlegung einer hermiteschen, positiv definiten Matrix 𝐴 ∈ ℂ𝑛×𝑛 ist ohne Zeilentausch
berechenbar.

Satz: Jede hermitesche, positiv definite Matrix 𝐴 ∈ ℂ𝑛×𝑛 besitzt eine Zerlegung der Form

𝐴 = 𝐿𝐷𝐿𝑇 ,

wobei 𝐿 eine untere Dreiecksmatrix mit Diagonaleinträgen 𝑙𝑖,𝑖 = 1, 𝑖 = 0, … , 𝑛 − 1 und 𝐷 eine
Diagonalmatrix mit positiven Einträgen ist.

Mit

𝐷1/2 ∶=
⎛⎜⎜⎜⎜
⎝

√𝑑0
√𝑑1

⋱
√𝑑𝑛−1

⎞⎟⎟⎟⎟
⎠

erhält man eine Zerlegung der Form

𝐴 = 𝐿𝐷𝐿𝑇 = (𝐿𝐷1/2) (𝐷1/2𝐿𝑇 ) = 𝐿̃𝐿̃𝑇

mit einer unteren Dreiecksmatrix 𝐿̃. Diese Zerlegung nennt man Cholesky Zerlegung .

[65]: HC = H.copy()
HC[0,-1] = (1+I)/3
HC[-1,0] = (1-I)/3
HC[-1,-1] = 1
HC

[65]:
⎡⎢
⎣

1 1
2

1
3 + 𝑖

31
2

1
3

1
41

3 − 𝑖
3

1
4 1

⎤⎥
⎦

[66]: HC.is_hermitian

[66]: True

[67]: [simplify(re(l))>0 for l in HC.eigenvals()]
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[67]: [True, True, True]

[68]: [expand(_) for _ in HC.LDLdecomposition()]

[68]:
⎡⎢
⎣

⎡⎢
⎣

1 0 0
1
2 1 0

1
3 − 𝑖

3 1 + 2𝑖 1
⎤⎥
⎦

, ⎡⎢
⎣

1 0 0
0 1

12 0
0 0 13

36

⎤⎥
⎦

⎤⎥
⎦

[69]: HC.cholesky().expand()

[69]:
⎡
⎢
⎣

1 0 0
1
2

√
3

6 0
1
3 − 𝑖

3
√

3
6 +

√
3𝑖
3

√
13
6

⎤
⎥
⎦

1.7.2 QR Zerlegung

vgl. CompLA VL 10

Die QR Zerlegung einer 𝑛 × 𝑚 Matrix $ A $ ist eine Zerlegung

𝐴 = 𝑄𝑅,

mit einer Matrix 𝑄 mit orthonormalen Spalten und einer (verallgemeinerten) oberen Dreiecksmatrix
𝑅.

Satz: Jede 𝑛 × 𝑚 Matrix 𝐴 mit 𝑛 ≥ 𝑚 und vollem Rang besitzt eine 𝑄𝑅 Zerlegung.

[70]: Q, R = A.QRdecomposition()
Q, R

[70]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 0 −1
0 1 0

⎤⎥
⎦

, ⎡⎢
⎣

1 −1 2
0 2 −1
0 0 1

⎤⎥
⎦

⎞⎟
⎠

[71]: Q.H@Q, Q@R-A

[71]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦

⎞⎟
⎠

[72]: B = Matrix(4, 3, [3, 1 , 1, 1, 4, -1, 1, -1, 4, 1, 1, 1])
B

[72]:
⎡
⎢⎢
⎣

3 1 1
1 4 −1
1 −1 4
1 1 1

⎤
⎥⎥
⎦

[73]: Q, R = B.QRdecomposition()
Q, R
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[73]:
⎛⎜⎜⎜⎜⎜
⎝

⎡
⎢⎢⎢
⎣

√
3

2 −3
√

537
358 −45

√
10382

10382√
3

6
41

√
537

1074
13

√
10382

5191√
3

6 −19
√

537
1074

42
√

10382
5191√

3
6

5
√

537
1074

25
√

10382
10382

⎤
⎥⎥⎥
⎦

, ⎡
⎢
⎣

2
√

3 7
√

3
6

7
√

3
6

0
√

537
6 −121

√
537

1074
0 0 5

√
10382
179

⎤
⎥
⎦

⎞⎟⎟⎟⎟⎟
⎠

[74]: Q.T@Q, Q@R-B

[74]:
⎛⎜⎜⎜⎜
⎝

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

,
⎡
⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥
⎦

⎞⎟⎟⎟⎟
⎠

1.8 Matrixfunktionen
1.8.1 Matrixwurzel

[4]: B = Matrix(3, 3, [4, 1 , 1, 1, 4, -1, 1, -1, 4])
B

[4]:
⎡⎢
⎣

4 1 1
1 4 −1
1 −1 4

⎤⎥
⎦

[76]: sqrtB = B**(S(1)/2)
sqrtB

[76]:
⎡
⎢
⎣

√
2

3 + 2
√

5
3 −

√
2

3 +
√

5
3 −

√
2

3 +
√

5
3

−
√

2
3 +

√
5

3
√

2
3 + 2

√
5

3 −
√

5
3 +

√
2

3
−

√
2

3 +
√

5
3 −

√
5

3 +
√

2
3

√
2

3 + 2
√

5
3

⎤
⎥
⎦

[77]: erg = sqrtB @ sqrtB - B
simplify(erg)

[77]:
⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦

1.8.2 Matrixexponentialfunktion

Die Exponentialfunktion 𝑧 ↦ 𝑒𝑧 ist als Reihe definiert

𝑒𝑧 =
∞

∑
𝑛=0

𝑧𝑛

𝑛! .

Setzt man hier formal für 𝑧 eine Matrix ein, so erhält man die Matrixexponentilafunktion (vgl.
Ana II).

[78]: exp(B)

[78]:
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⎡
⎢
⎣

𝑒2
3 + 2𝑒5

3 −𝑒2
3 + 𝑒5

3 −𝑒2
3 + 𝑒5

3
−𝑒2

3 + 𝑒5
3

𝑒2
3 + 2𝑒5

3 −𝑒5
3 + 𝑒2

3
−𝑒2

3 + 𝑒5
3 −𝑒5

3 + 𝑒2
3

𝑒2
3 + 2𝑒5

3

⎤
⎥
⎦

𝑡 ↦ exp(𝑡𝐵) löst die Differentialgleichung

𝑑
𝑑𝑡𝑦(𝑡) = 𝐵𝑦(𝑡)

[5]: t = symbols('t')
diff(exp(t*B), t) - B*exp(t*B)

[5]:
⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦

exp erfülltÖ exp(𝐵) exp(−𝐵) = 𝐼

[80]: exp(t*B) * exp(-t*B)

[80]:
⎡
⎢
⎣

2 (−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 + 2𝑒−5𝑡

3 ) (2𝑒5𝑡
3 + 𝑒2𝑡

3 ) (−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (2𝑒5𝑡
3 + 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 − 𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 + 2𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) (−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (2𝑒5𝑡
3 + 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 − 𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 + 2𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 )
(−𝑒−2𝑡

3 + 𝑒−5𝑡
3 ) (−𝑒5𝑡

3 + 𝑒2𝑡
3 ) + (−𝑒−2𝑡

3 + 𝑒−5𝑡
3 ) (2𝑒5𝑡

3 + 𝑒2𝑡
3 ) + (𝑒−2𝑡

3 + 2𝑒−5𝑡
3 ) (𝑒5𝑡

3 − 𝑒2𝑡
3 ) (−𝑒−2𝑡

3 + 𝑒−5𝑡
3 ) (𝑒5𝑡

3 − 𝑒2𝑡
3 ) + (𝑒−2𝑡

3 − 𝑒−5𝑡
3 ) (−𝑒5𝑡

3 + 𝑒2𝑡
3 ) + (𝑒−2𝑡

3 + 2𝑒−5𝑡
3 ) (2𝑒5𝑡

3 + 𝑒2𝑡
3 ) (−𝑒−2𝑡

3 + 𝑒−5𝑡
3 ) (𝑒5𝑡

3 − 𝑒2𝑡
3 ) + (𝑒−2𝑡

3 − 𝑒−5𝑡
3 ) (2𝑒5𝑡

3 + 𝑒2𝑡
3 ) + (𝑒−2𝑡

3 + 2𝑒−5𝑡
3 ) (−𝑒5𝑡

3 + 𝑒2𝑡
3 )

(−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (−𝑒5𝑡
3 + 𝑒2𝑡

3 ) + (−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (2𝑒5𝑡
3 + 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 + 2𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) (−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 − 𝑒−5𝑡

3 ) (2𝑒5𝑡
3 + 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 + 2𝑒−5𝑡

3 ) (−𝑒5𝑡
3 + 𝑒2𝑡

3 ) (−𝑒−2𝑡
3 + 𝑒−5𝑡

3 ) (𝑒5𝑡
3 − 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 − 𝑒−5𝑡

3 ) (−𝑒5𝑡
3 + 𝑒2𝑡

3 ) + (𝑒−2𝑡
3 + 2𝑒−5𝑡

3 ) (2𝑒5𝑡
3 + 𝑒2𝑡

3 )

⎤
⎥
⎦

[81]: B.applyfunc(exp) # eintragsweise Anwendung der exp Funktion

[81]:
⎡⎢
⎣

𝑒4 𝑒 𝑒
𝑒 𝑒4 𝑒−1

𝑒 𝑒−1 𝑒4
⎤⎥
⎦

1.9 Gradient
[82]: x, y, z = symbols('x y z')

var = (x, y, z)

[83]: f = exp(x**2 + y**2 + z**2)
f

[83]: 𝑒𝑥2+𝑦2+𝑧2

[84]: gr = Matrix([[f.diff(t) for t in var]])
gr

[84]: [2𝑥𝑒𝑥2+𝑦2+𝑧2 2𝑦𝑒𝑥2+𝑦2+𝑧2 2𝑧𝑒𝑥2+𝑦2+𝑧2]

[85]: J = Matrix([f]).jacobian(var)
J

[85]: [2𝑥𝑒𝑥2+𝑦2+𝑧2 2𝑦𝑒𝑥2+𝑦2+𝑧2 2𝑧𝑒𝑥2+𝑦2+𝑧2]
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1.10 Hessematrix
[86]: H = J.jacobian(var)

H

[86]:
⎡⎢
⎣

4𝑥2𝑒𝑥2+𝑦2+𝑧2 + 2𝑒𝑥2+𝑦2+𝑧2 4𝑥𝑦𝑒𝑥2+𝑦2+𝑧2 4𝑥𝑧𝑒𝑥2+𝑦2+𝑧2

4𝑥𝑦𝑒𝑥2+𝑦2+𝑧2 4𝑦2𝑒𝑥2+𝑦2+𝑧2 + 2𝑒𝑥2+𝑦2+𝑧2 4𝑦𝑧𝑒𝑥2+𝑦2+𝑧2

4𝑥𝑧𝑒𝑥2+𝑦2+𝑧2 4𝑦𝑧𝑒𝑥2+𝑦2+𝑧2 4𝑧2𝑒𝑥2+𝑦2+𝑧2 + 2𝑒𝑥2+𝑦2+𝑧2

⎤⎥
⎦

[87]: hessian(f, var)

[87]:
⎡⎢
⎣

4𝑥2𝑒𝑥2+𝑦2+𝑧2 + 2𝑒𝑥2+𝑦2+𝑧2 4𝑥𝑦𝑒𝑥2+𝑦2+𝑧2 4𝑥𝑧𝑒𝑥2+𝑦2+𝑧2

4𝑥𝑦𝑒𝑥2+𝑦2+𝑧2 4𝑦2𝑒𝑥2+𝑦2+𝑧2 + 2𝑒𝑥2+𝑦2+𝑧2 4𝑦𝑧𝑒𝑥2+𝑦2+𝑧2

4𝑥𝑧𝑒𝑥2+𝑦2+𝑧2 4𝑦𝑧𝑒𝑥2+𝑦2+𝑧2 4𝑧2𝑒𝑥2+𝑦2+𝑧2 + 2𝑒𝑥2+𝑦2+𝑧2

⎤⎥
⎦

[88]: hessian(f, var) - H

[88]:
⎡⎢
⎣

0 0 0
0 0 0
0 0 0

⎤⎥
⎦

[89]: f = Function('f')
f(*var)

[89]: 𝑓(𝑥, 𝑦, 𝑧)

[90]: hessian(f(x, y, z), var)

[90]:
⎡⎢⎢
⎣

𝜕2
𝜕𝑥2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑦𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑦2 𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧)

𝜕2
𝜕𝑧𝜕𝑥𝑓(𝑥, 𝑦, 𝑧) 𝜕2

𝜕𝑧𝜕𝑦𝑓(𝑥, 𝑦, 𝑧) 𝜕2
𝜕𝑧2 𝑓(𝑥, 𝑦, 𝑧)

⎤⎥⎥
⎦

[91]: f = x**4 / 2 - x**2 * y**2 - y**4 / 4 + x**3 - 2 * x * y**2
f.factor()

[91]: 2𝑥4 + 4𝑥3 − 4𝑥2𝑦2 − 8𝑥𝑦2 − 𝑦4

4
[124]: fn = lambdify((x, y), f)

[125]: gn = np.linspace(-2, 2, 500)
X, Y = np.meshgrid(gn ,gn)
F = fn(X, Y)

[126]: fig = plt.figure(6)
fig.clf()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, F, lw=1, cmap=plt.cm.viridis);
ax.set_zlim(-25, 25);
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[127]: ax.contour(X, Y, F, [-10, -1, 0, 1, 10]exp(��) , offset=-25, cmap=plt.cm.
↪viridis);

[120]: fig = plt.figure(7)
ax = fig.gca()
cs = ax.contour(X, Y, F, [-3, -1, -.6, -.4, 0, .5, 1, 4], cmap=plt.cm.viridis)
plt.clabel(cs)

[120]: <a list of 18 text.Text objects>
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[97]: ax.contour?

1.11 Extrema und Sattelpunkte

[98]: ext = solve(Matrix([f]).jacobian((x, y)))

[99]: ext # Liste von Lösungen jeweils als Dictionary

[99]:
⎡⎢
⎣

{𝑥 ∶ −3
2, 𝑦 ∶ 0} , {𝑥 ∶ 0, 𝑦 ∶ 0} ,

⎧{
⎨{⎩

𝑥 ∶ −5
4 −

√
33

12 , 𝑦 ∶ −√17
12 −

√
33

12
⎫}
⎬}⎭

,
⎧{
⎨{⎩

𝑥 ∶ −5
4 −

√
33

12 , 𝑦 ∶ √17
12 −

√
33

12
⎫}
⎬}⎭

,
⎧{
⎨{⎩

𝑥 ∶ −5
4 +

√
33

12 , 𝑦 ∶ −√
√

33
12 + 17

12
⎫}
⎬}⎭

,
⎧{
⎨{⎩

𝑥 ∶ −5
4 +

√
33

12 , 𝑦 ∶ √
√

33
12 + 17

12
⎫}
⎬}⎭

⎤⎥
⎦

[100]: H = hessian(f, (x, y))
H

[100]:
[6𝑥2 + 6𝑥 − 2𝑦2 −4𝑥𝑦 − 4𝑦

−4𝑥𝑦 − 4𝑦 −2𝑥2 − 4𝑥 − 3𝑦2]

Hurwitz Kriterium

Eine Matrix 𝐴 ist genau dann positiv definit, falls alle Hauptminoren von 𝐴 positiv sind.

Eine Matrix 𝐴 ist genau dann negativ definit, falls −𝐴 positiv definit ist.
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[101]: H0 = H.subs(ext[0])
H0, (H0.det() > 0) & (H0[0,0] > 0)

[101]:
([

9
2 0
0 3

2
] , True)

[265]: for ex in ext:
H0 = H.subs(ex)
stri = f' bei x={ex[x]} \t y={ex[y]}'
if (H0.det() > 0) & (H0[0, 0] > 0): # H ist hier positiv definit

print('Minimum \t' + stri)
elif ((-H0).det() > 0) & (-H0[0, 0] > 0): # -H ist hier positiv definit

print('Maximum \t' + stri)
elif (H0.det() < 0): #Spezialfall für reellwertige Funktionen ueber R^2

print('Sattelpunkt\t' + stri)
else:

print('Keine Aussage\t' + stri + '\t mit Hilfe der Hessematrix␣
↪moeglich')

Minimum bei x=-3/2 y=0
Keine Aussage bei x=0 y=0 mit Hilfe der Hessematrix moeglich
Sattelpunkt bei x=-5/4 - sqrt(33)/12 y=-sqrt(17/12 - sqrt(33)/12)
Sattelpunkt bei x=-5/4 - sqrt(33)/12 y=sqrt(17/12 - sqrt(33)/12)
Maximum bei x=-5/4 + sqrt(33)/12 y=-sqrt(sqrt(33)/12 + 17/12)
Maximum bei x=-5/4 + sqrt(33)/12 y=sqrt(sqrt(33)/12 + 17/12)

[299]: n = len(ext)
extd = np.empty(n,

dtype=[('x', float), ('y', float), ('f', float), ('size', int),
('color', str, 7), ('type', str, 7)]) # structured␣

↪datatype
for i, ex in enumerate(ext):

extd[i]['x'] = float(ex[x].n())
extd[i]['y'] = float(ex[y].n())
extd[i]['f'] = float(f.subs(ex).n())
H0 = H.subs(ex)
if (H0.det() > 0) & (H0[0, 0] > 0):

extd[i]['color'] = 'orange'; extd[i]['size'] = 49
extd[i]['type'] = 'Minimum'

elif ((-H0).det() > 0) & (-H0[0, 0] > 0):
extd[i]['color'] = 'crimson'; extd[i]['size'] = 50
extd[i]['type'] = 'Maximum'

elif (H0.det() < 0):
extd[i]['color'] = 'lime'; extd[i]['size'] = 51
extd[i]['type'] = 'Sattel'

else:
extd[i]['color'] = 'black'; extd[i]['size'] = 52
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extd[i]['type'] = '?'

[300]: extd

[300]: array([(-1.5 , 0. , -0.84375 , 49, 'orange', 'Minimum'),
( 0. , 0. , 0. , 52, 'black', '?'),
(-1.72871355, -0.96847979, -0.48081761, 51, 'lime', 'Sattel'),
(-1.72871355, 0.96847979, -0.48081761, 51, 'lime', 'Sattel'),
(-0.77128645, -1.37672809, 0.61623428, 50, 'crimson', 'Maximum'),
(-0.77128645, 1.37672809, 0.61623428, 50, 'crimson', 'Maximum')],
dtype=[('x', '<f8'), ('y', '<f8'), ('f', '<f8'), ('size', '<i8'),

('color', '<U7'), ('type', '<U7')])

[301]: from matplotlib.colors import Normalize

xn = np.linspace(-2.2, 1)
yn = np.linspace(-1.7, 1.7)
X, Y = np.meshgrid(xn, yn)
F = fn(X, Y)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, F, lw=0, cmap=plt.cm.viridis, alpha=0.4, vmin=-1, vmax=1)
ax.scatter(extd['x'], extd['y'], extd['f'], s=50, c=extd['color'])
ax.set_zlim(-2, 1);
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[312]: import matplotlib
fig = plt.figure()
ax = fig.add_subplot(111)
ax.contour(X, Y, F, 50, cmap=plt.cm.viridis, vmin=-1, vmax=1)
scatter = ax.scatter(extd['x'], extd['y'], s=extd['size'], c=extd['color'])

handles, _ = scatter.legend_elements(prop='sizes') # leider können wir nicht␣
↪auf die 'colors' zugreifen

# Trick um Legende zu beschriften
sizes, index = np.unique(extd['size'], return_index=True)
for i, ind in enumerate(index):

handles[i].set_color(extd['color'][ind])

ax.legend(handles, extd['type'][index]);

[ ]:
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