
lektion10

December 17, 2025

Inhalt

1 Vektoren

1.1 transponieren und (transponieren und komplex konjugieren)

1.2 Skalarprodukt

2 Matrizen

2.1 Slicing von Matrizen

2.2 Werte eintragen

2.3 Numpy Arrays

2.4 Matrixvektorprodukt und Matrixmatrixprodukt

2.5 spezielle Matrizen (Identität, Nullmatrix, Diagonalmatrix, Ones)

2.6 Matrizen zusammenfügen

2.7 Matrizen mit Iterator

3 Kopieren von Matrizen

4 Lineare Algebra

4.1 Determinate und Inverse

4.2 Funktionen angewandt auf eine Matrix

4.3 charakteristisches Polynom

4.4 Kern und Rang

4.5 Gram Schmidt Orthogonalisierung

5 Lösung linearer Gleichungssysteme

5.1 Lösung mit speziellen Verfahren,

5.2 Lösung mit ‘solve’ und ‘linsolve’

5.3 Matrizen mit Parameter/Ausdrücken

6 Polygone (Farbe, Marker, Liniendicke)

1

1 Lektion 10
1.1 Vektoren

[1]: from sympy import *
init_printing()

Es gibt keine Vektoren nur 1 × 𝑛 und 𝑛 × 1 Matrizen.

[2]: v = Matrix([0 , 1+I, 1-I])
v

[2]:
⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

[3]: v = Matrix(3, 1, [0, 1+I, 1-I])
v

[3]:
⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

[4]: u = Matrix(1, 3, [3*I, 1+I, 1])
u

[4]: [3𝑖 1 + 𝑖 1]

[5]: display(u)
display(v)

[3𝑖 1 + 𝑖 1]

⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

[6]: v*u

[6]:
⎡⎢
⎣

0 0 0
3𝑖 (1 + 𝑖) (1 + 𝑖)2 1 + 𝑖
3𝑖 (1 − 𝑖) (1 − 𝑖) (1 + 𝑖) 1 − 𝑖

⎤⎥
⎦

[7]: u*v # Achtung das ist eine 1x1 Matrix

[7]: [1 − 𝑖 + (1 + 𝑖)2]

[8]: simplify((u*v)) # simplify wird eintragsweise angewandt, das gilt nicht für␣
↪alle Funktionen

[8]:

2

[1 + 𝑖]

[9]: xs = symbols('x:3')
xs

[9]: (𝑥0, 𝑥1, 𝑥2)

[10]: x = Matrix(xs)
x

[10]:
⎡⎢
⎣

𝑥0
𝑥1
𝑥2

⎤⎥
⎦

1.1.1 transponieren und (transponieren und komplex konjugieren)

[11]: x.T*x # .T transponieren

[11]: [𝑥2
0 + 𝑥2

1 + 𝑥2
2]

[12]: x.transpose()*x

[12]: [𝑥2
0 + 𝑥2

1 + 𝑥2
2]

[13]: simplify((v.T*v)[0])

[13]: 0
[14]: v.conjugate(), v.C # .C konjugieren

[14]:
⎛⎜
⎝

⎡⎢
⎣

0
1 − 𝑖
1 + 𝑖

⎤⎥
⎦

, ⎡⎢
⎣

0
1 − 𝑖
1 + 𝑖

⎤⎥
⎦

⎞⎟
⎠

[15]: v.H # .H transponieren und komplex konjugieren

[15]: [0 1 − 𝑖 1 + 𝑖]

[16]: simplify((v.H*v)[0])

[16]: 4

1.1.2 Skalarprodukt

[17]: u, v

[17]:
⎛⎜
⎝

[3𝑖 1 + 𝑖 1] , ⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

⎞⎟
⎠

3

[18]: u.dot(v, hermitian=True).simplify() # Skalarprodukt .dot gibt einen Ausdruck␣
↪zurueck

[18]: 3 − 𝑖
[20]: simplify((u.conjugate() * v)) # Skalarprodukt

[20]: [3 − 𝑖]

[22]: simplify(u.C * v) # Skalarprodukt

[22]: [3 − 𝑖]

[23]: u.dot(v, hermitian=True, conjugate_convention='physics').simplify() #␣
↪Skalarprodukt, wobei v konjugiert wird

[23]: 3 + 𝑖
[25]: simplify(u * v.C)

[25]: [3 + 𝑖]

[26]: u.dot(v).simplify() # das ist kein Skalarprodukt für komplexe Vektorräume

[26]: 1 + 𝑖
[27]: simplify((u*v))

[27]: [1 + 𝑖]

1.2 Matrizen
[28]: A = Matrix([[1, 2], [3, 4]])

A

[28]:
[1 2
3 4]

[29]: A = Matrix(3, 3, range(1, 10))
A

[29]:
⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

[30]: A[1, 2]

[30]: 6
[31]: A.shape

4

[31]: (3, 3)

1.2.1 Slicing von Matrizen

[32]: A[:, 0] # erste Spalte

[32]:
⎡⎢
⎣

1
4
7
⎤⎥
⎦

[33]: A.col(0)

[33]:
⎡⎢
⎣

1
4
7
⎤⎥
⎦

[34]: # vier Arten die letzte Zeile in der 3x3 Matrix A zu erhalten
A[A.shape[1] - 1, :], A[-1, :], A.row(A.shape[1] - 1), A.row(-1)

[34]: ([7 8 9] , [7 8 9] , [7 8 9] , [7 8 9])

[35]: A[0:2, 1:3]

[35]:
[2 3
5 6]

Beim Entfernen ‘delete’ von Spalten oder Zeilen wird die Matrix in place modifiziert

[36]: A.col_del(0)
A

[36]:
⎡⎢
⎣

2 3
5 6
8 9

⎤⎥
⎦

[37]: A.row_del(-1)
A

[37]:
[2 3
5 6]

Das Hinzufügen ‘insert’ von Spalten oder Zeilen erfolgt nicht in place.

[38]: A = A.row_insert(1, Matrix([[3, 4]]))
A

[38]:
⎡⎢
⎣

2 3
3 4
5 6

⎤⎥
⎦

5

[39]: A = A.col_insert(-1, Matrix([1, 6, 1])) # unerwartet
A

[39]:
⎡⎢
⎣

2 1 3
3 6 4
5 1 6

⎤⎥
⎦

[40]: A.col_del(1)

[41]: A = A.row_join(Matrix(3, 1, [1, 6, 1]))
A

[41]:
⎡⎢
⎣

2 3 1
3 4 6
5 6 1

⎤⎥
⎦

1.2.2 Werte eintragen

[42]: A[0, 0] = 10

[43]: A

[43]:
⎡⎢
⎣

10 3 1
3 4 6
5 6 1

⎤⎥
⎦

[44]: A[0, :] = u
A

[44]:
⎡⎢
⎣

3𝑖 1 + 𝑖 1
3 4 6
5 6 1

⎤⎥
⎦

1.2.3 Numpy Arrays

Achtung !

Numpy Arrays haben Einträge von einem bestimmten Datentyp. Der Datentyp kann nach der
Erstellung des Arrays nicht geändert werden.

[45]: import numpy as np

An = np.array([[1, 2, 3], [4, 5, 6], [6, 7, 8]])
An

[45]: array([[1, 2, 3],
[4, 5, 6],
[6, 7, 8]])

6

[46]: An = np.array(np.arange(1, 10)).reshape(3, 3)
An

[46]: array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

[47]: An[0, 0] = 1.4
An

[47]: array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

[48]: An = An.astype(float) # astype erzeugt eine Kopie
An

[48]: array([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])

[49]: An[0, 0] = 1.4
An

[49]: array([[1.4, 2. , 3.],
[4. , 5. , 6.],
[7. , 8. , 9.]])

[50]: An[1, 1] = 1 + 1j

TypeError Traceback (most recent call last)
Cell In[50], line 1
----> 1 An[1, 1] = 1 + 1j

TypeError: float() argument must be a string or a real number, not 'complex'

[51]: Ac = An.astype(complex)
Ac[1, 1] = 1 + 1j
Ac

[51]: array([[1.4+0.j, 2. +0.j, 3. +0.j],
[4. +0.j, 1. +1.j, 6. +0.j],
[7. +0.j, 8. +0.j, 9. +0.j]])

7

1.2.4 Matrixvektorprodukt und Matrixmatrixprodukt

[52]: A*v

[52]:
⎡⎢
⎣

1 − 𝑖 + (1 + 𝑖)2

10 − 2𝑖
7 + 5𝑖

⎤⎥
⎦

[53]: A*u

ShapeError Traceback (most recent call last)
Cell In[53], line 1
----> 1 A*u

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/core/decorators.py:118, in call_highest_priority.<locals>.
↪priority_decorator.<locals>.binary_op_wrapper(self, other)

116 if f is not None:
117 return f(self)

--> 118 return func(self, other)

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/matrices/matrixbase.py:2819, in MatrixBase.__mul__(self, other)

2790 @call_highest_priority('__rmul__')
2791 def __mul__(self, other):
2792 """Return self*other where other is either a scalar or a matrix
2793 of compatible dimensions.
2794
(…)
2816 matrix_multiply_elementwise
2817 """

-> 2819 return self.multiply(other)

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/matrices/matrixbase.py:2846, in MatrixBase.multiply(self, other,␣
↪dotprodsimp)

2843 elif T == "is_matrix":
2845 if self.shape[1] != other.shape[0]:

-> 2846 raise ShapeError(f"Matrix size mismatch: {self.shape} * {other.
↪shape}.")

2848 m = self._eval_matrix_mul(other)
2850 if isimpbool:

ShapeError: Matrix size mismatch: (3, 3) * (1, 3).

[54]: A*x

8

[54]:
⎡⎢
⎣

3𝑖𝑥0 + 𝑥1 (1 + 𝑖) + 𝑥2
3𝑥0 + 4𝑥1 + 6𝑥2
5𝑥0 + 6𝑥1 + 𝑥2

⎤⎥
⎦

[55]: B = Matrix(3, 3, [0, 1, 0, 1, 0, 0, 0, 0, 1])
B

[55]:
⎡⎢
⎣

0 1 0
1 0 0
0 0 1

⎤⎥
⎦

[56]: A*B

[56]:
⎡⎢
⎣

1 + 𝑖 3𝑖 1
4 3 6
6 5 1

⎤⎥
⎦

[57]: B*A

[57]:
⎡⎢
⎣

3 4 6
3𝑖 1 + 𝑖 1
5 6 1

⎤⎥
⎦

1.2.5 spezielle Matrizen (Identität, Nullmatrix, Diagonalmatrix, Ones)

[58]: eye(4)

[58]:
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

[59]: C = zeros(4, 3)
C

[59]:
⎡
⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥
⎦

[60]: C[1, 1] = 1
C

[60]:
⎡
⎢⎢
⎣

0 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥
⎦

9

[61]: D = diag(*[1, 2, 3])
D

[61]:
⎡⎢
⎣

1 0 0
0 2 0
0 0 3

⎤⎥
⎦

[62]: diag(1, 2, 3)

[62]:
⎡⎢
⎣

1 0 0
0 2 0
0 0 3

⎤⎥
⎦

[63]: diag(A, B)

[63]:
⎡
⎢⎢⎢⎢⎢
⎣

3𝑖 1 + 𝑖 1 0 0 0
3 4 6 0 0 0
5 6 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

[64]: ones(2, 2)

[64]:
[1 1
1 1]

1.2.6 Matrizen zusammenfügen

[65]: Matrix([[A, B]])

[65]:
⎡⎢
⎣

3𝑖 1 + 𝑖 1 0 1 0
3 4 6 1 0 0
5 6 1 0 0 1

⎤⎥
⎦

[66]: Matrix.hstack(A, B)

[66]:
⎡⎢
⎣

3𝑖 1 + 𝑖 1 0 1 0
3 4 6 1 0 0
5 6 1 0 0 1

⎤⎥
⎦

[67]: Matrix.vstack(A, B)

[67]:
⎡
⎢⎢⎢⎢⎢
⎣

3𝑖 1 + 𝑖 1
3 4 6
5 6 1
0 1 0
1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

10

[68]: AB = Matrix([A, B])
AB

[68]:
⎡
⎢⎢⎢⎢⎢
⎣

3𝑖 1 + 𝑖 1
3 4 6
5 6 1
0 1 0
1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

[69]: AB.reshape(1, len(AB))

[69]: [3𝑖 1 + 𝑖 1 3 4 6 5 6 1 0 1 0 1 0 0 0 0 1]

1.2.7 Matrizen mit Iterator

[70]: def hilb(i, j):
return 1/(i+j+1)

[71]: H = Matrix(3, 3, hilb) # Hilbertmatrix
H

[71]:
⎡⎢
⎣

1 1
2

1
31

2
1
3

1
41

3
1
4

1
5

⎤⎥
⎦

[72]: def superdiag(i, j, a):
if i == j-1:

return a[i]
else:

return 0

[73]: Sup = Matrix(4, 4, lambda i, j : superdiag(i, j, [1, 2, 3]))
Sup

[73]:
⎡
⎢⎢
⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥
⎦

1.3 Kopieren von Matrizen

[83]: B = Matrix(2, 2, range(4))
BB = B

[84]: BB, B

[84]:
([0 1

2 3] , [0 1
2 3])

11

[85]: BB[0, 0] = 9

[86]: BB, B

[86]:
([9 1

2 3] , [9 1
2 3])

[87]: BBB = B.copy()
BBBB = B[:, :]

[88]: BBB[1, 1] = 99
BBBB[1, 1] = 99

[89]: BBBB, BBB, B

[89]:
([9 1

2 99] , [9 1
2 99] , [9 1

2 3])

1.4 Lineare Algebra
1.4.1 Determinate und Inverse

[90]: A = Matrix(3, 3, range(-4, 5)) + eye(3)
A, A.det()

[90]:
⎛⎜
⎝

⎡⎢
⎣

−3 −3 −2
−1 1 1
2 3 5

⎤⎥
⎦

, −17⎞⎟
⎠

[91]: Ainv = A**(-1)
Ainv

[91]:
⎡⎢
⎣

− 2
17 − 9

17
1

17
− 7

17
11
17 − 5

175
17 − 3

17
6

17

⎤⎥
⎦

[92]: A.inv()

[92]:
⎡⎢
⎣

− 2
17 − 9

17
1

17
− 7

17
11
17 − 5

175
17 − 3

17
6

17

⎤⎥
⎦

[93]: Ainv*A, A, Ainv

[93]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

−3 −3 −2
−1 1 1
2 3 5

⎤⎥
⎦

, ⎡⎢
⎣

− 2
17 − 9

17
1

17
− 7

17
11
17 − 5

175
17 − 3

17
6

17

⎤⎥
⎦

⎞⎟
⎠

12

1.4.2 Funktionen angewandt auf eine Matrix

Elementweise Anwendung einer Funktion

[94]: A.applyfunc(lambda x: exp(x))

[94]:
⎡⎢
⎣

𝑒−3 𝑒−3 𝑒−2

𝑒−1 𝑒 𝑒
𝑒2 𝑒3 𝑒5

⎤⎥
⎦

Matrixfunktionen, definiert etwa über Potenzreihe

[95]: expA = A.exp()
expA

[95]:
⎡
⎢⎢⎢⎢
⎣

−(78701−55650
√

2)(11
√

2+16)𝑒1+3
√

2

(−246684+174432
√

2)(31
√

2+44) − (−3527+2494
√

2)(−16+11
√

2)
(−23148+16368

√
2)(−44+31

√
2)𝑒−1+3

√
2 + 𝑒

6 −(49−35
√

2)(11
√

2+16)𝑒1+3
√

2

(−264+186
√

2)(31
√

2+44) − 𝑒
3 − (−16+11

√
2)(−13+9

√
2)

(−44+31
√

2)(−24+18
√

2)𝑒−1+3
√

2 −(308−217
√

2)(11
√

2+16)𝑒1+3
√

2

(−5616+3972
√

2)(31
√

2+44) − (−468+331
√

2)(−16+11
√

2)
(−528+372

√
2)(−44+31

√
2)𝑒−1+3

√
2 + 𝑒

6

− 𝑒
3 − (−3527+2494

√
2)(2−

√
2)

(−23148+16368
√

2)(−5+4
√

2)𝑒−1+3
√

2 − (−2−
√

2)(78701−55650
√

2)𝑒1+3
√

2

(−246684+174432
√

2)(5+4
√

2) − (−13+9
√

2)(2−
√

2)
(−24+18

√
2)(−5+4

√
2)𝑒−1+3

√
2 + 2𝑒

3 − (−2−
√

2)(49−35
√

2)𝑒1+3
√

2

(−264+186
√

2)(5+4
√

2) − 𝑒
3 − (−468+331

√
2)(2−

√
2)

(−528+372
√

2)(−5+4
√

2)𝑒−1+3
√

2 − (−2−
√

2)(308−217
√

2)𝑒1+3
√

2

(−5616+3972
√

2)(5+4
√

2)
−3527+2494

√
2

(−23148+16368
√

2)𝑒−1+3
√

2 + 𝑒
6 + (78701−55650

√
2)𝑒1+3

√
2

−246684+174432
√

2 − 𝑒
3 + −13+9

√
2

(−24+18
√

2)𝑒−1+3
√

2 + (49−35
√

2)𝑒1+3
√

2

−264+186
√

2
−468+331

√
2

(−528+372
√

2)𝑒−1+3
√

2 + 𝑒
6 + (308−217

√
2)𝑒1+3

√
2

−5616+3972
√

2

⎤
⎥⎥⎥⎥
⎦

[96]: expA.applyfunc(simplify) # das macht es nicht besser

[96]:
⎡
⎢⎢⎢
⎣

−845180841𝑒6
√

2−158617322𝑒3
√

2−36836184
√

2+52094231+112159384
√

2𝑒3
√

2+597633104
√

2𝑒6
√

2

12(−79308661+56079692
√

2)𝑒−1+3
√

2
−13𝑒6

√
2−6

√
2𝑒3

√
2−3

√
2+5+8𝑒3

√
2+9

√
2𝑒6

√
2

6(−4+3
√

2)𝑒−1+3
√

2
−37587𝑒6

√
2−41114𝑒3

√
2−55650

√
2+78701+29072

√
2𝑒3

√
2+26578

√
2𝑒6

√
2

12(−20557+14536
√

2)𝑒−1+3
√

2

−270776706𝑒6
√

2−224318768
√

2𝑒3
√

2−46457938+32850723
√

2+317234644𝑒3
√

2+191468045
√

2𝑒6
√

2

12(−79308661+56079692
√

2)𝑒−1+3
√

2
1+4𝑒3

√
2+𝑒6

√
2

6𝑒−1+3
√

2
−12042𝑒6

√
2−58144

√
2𝑒3

√
2−70186+49629

√
2+82228𝑒3

√
2+8515

√
2𝑒6

√
2

12(−20557+14536
√

2)𝑒−1+3
√

2

−214697014
√

2𝑒6
√

2−158617322𝑒3
√

2−145010107+102537630
√

2+112159384
√

2𝑒3
√

2+303627429𝑒6
√

2

12(−79308661+56079692
√

2)𝑒−1+3
√

2
−287

√
2𝑒6

√
2−512

√
2𝑒3

√
2−1130+799

√
2+724𝑒3

√
2+406𝑒6

√
2

12(−181+128
√

2)𝑒−1+3
√

2
−9548

√
2𝑒6

√
2−41114𝑒3

√
2−219073+154908

√
2+29072

√
2𝑒3

√
2+13503𝑒6

√
2

12(−20557+14536
√

2)𝑒−1+3
√

2

⎤
⎥⎥⎥
⎦

1.4.3 charakteristisches Polynom

[97]: H.charpoly()

[97]:
PurePoly (𝜆3 − 23

15𝜆2 + 127
720𝜆 − 1

2160, 𝜆, 𝑑𝑜𝑚𝑎𝑖𝑛 = ℚ)

[98]: H.det()

[98]: 1
2160

[99]: H.trace()

[99]: 23
15

1.4.4 Kern und Rang

[100]: H.nullspace(), H.rank()

[100]: ([] , 3)

13

[101]: CS = H.columnspace() # Basis des Bildes von H, wenn H von links operiert
RS = H.rowspace()
CS, RS

[101]:
⎛⎜
⎝

⎡⎢
⎣

⎡⎢
⎣

1
1
21
3

⎤⎥
⎦

, ⎡⎢
⎣

1
21
31
4

⎤⎥
⎦

, ⎡⎢
⎣

1
31
41
5

⎤⎥
⎦

⎤⎥
⎦

, [[1 1
2

1
3] , [0 1

12
1

12] , [0 0 1
2160]]⎞⎟

⎠

1.4.5 Gram Schmidt Orthogonalisierung

[102]: CSo = GramSchmidt(CS) # Orthogonalisierung
CSo

[102]:
⎡⎢
⎣

⎡⎢
⎣

1
1
21
3

⎤⎥
⎦

, ⎡⎢
⎣

− 5
9817

29413
196

⎤⎥
⎦

, ⎡⎢
⎣

1
2190

− 1
3651

365

⎤⎥
⎦

⎤⎥
⎦

[103]: n = len(CSo)
[(CSo[i].H * CSo[j])[0] for i in range(n) for j in range(n)]

[103]:
[49

36, 0, 0, 0, 73
7056, 0, 0, 0, 1

65700]

[109]: B = Matrix(CSo).reshape(3,3).T
B.H * B

[109]:
⎡⎢
⎣

49
36 0 0
0 73

7056 0
0 0 1

65700

⎤⎥
⎦

1.5 Lösung linearer Gleichungssysteme
1.5.1 Lösung mit speziellen Verfahren,

• LR Zerlegung (engl. LU decomposition) (mehr dazu in CompLA und Numerik I)
• QR Zerlegung (engl. QR decomposition) (mehr dazu in CompLa und Numerik I)
• Gaußelimination Schule/Lineare Algebra, hier wird das erweiterte lin-

eare System auf Zeilenstufenform (engl. row echelon form) gebracht.
https://en.wikipedia.org/wiki/Gaussian_elimination

Diese Verfahren sind für ‘symbolische’ Matrizen und Vektoren gedacht.

[110]: A

[110]:
⎡⎢
⎣

−3 −3 −2
−1 1 1
2 3 5

⎤⎥
⎦

[111]: A.LUsolve(v)

[111]:

14

⎡⎢
⎣

− 8
17 − 10𝑖

176
17 + 16𝑖

173
17 − 9𝑖

17

⎤⎥
⎦

[112]: A.QRsolve(v)

[112]:
⎡
⎢
⎢
⎣

√
14(− 8

√
14

17 − 10
√

14𝑖
17)

14√
5(6

√
5

17 + 16
√

5𝑖
17)

5√
70(3

√
70

70 − 9
√

70𝑖
70)

17

⎤
⎥
⎥
⎦

[114]: A.gauss_jordan_solve(v)

[114]:
⎛⎜
⎝

⎡⎢
⎣

− 8
17 − 10𝑖

176
17 + 16𝑖

173
17 − 9𝑖

17

⎤⎥
⎦

, []⎞⎟
⎠

[115]: A.inv()*v

[115]:
⎡⎢
⎣

− 8
17 − 10𝑖

176
17 + 16𝑖

173
17 − 9𝑖

17

⎤⎥
⎦

[123]: B = Matrix(3, 4, range(12))
B.gauss_jordan_solve(Matrix(3, 1, [0, 1, 2])) # allgemeiner Lösungsraum, falls␣

↪B mehr Spalten als Zeilen hat

[123]:
⎛⎜⎜⎜⎜
⎝

⎡
⎢⎢
⎣

𝜏0 + 2𝜏1 + 1
4

−2𝜏0 − 3𝜏1
𝜏0
𝜏1

⎤
⎥⎥
⎦

, [𝜏0
𝜏1

]
⎞⎟⎟⎟⎟
⎠

1.5.2 Lösung mit ‘solve’ und ‘linsolve’

linsolve nutzt intern gauss_jordan_solve

[127]: x = Matrix(3, 1, xs)
x

[127]:
⎡⎢
⎣

𝑥0
𝑥1
𝑥2

⎤⎥
⎦

[128]: lgs = Eq(A*x, v)
lgs

[128]:
⎡⎢
⎣

−3𝑥0 − 3𝑥1 − 2𝑥2
−𝑥0 + 𝑥1 + 𝑥2

2𝑥0 + 3𝑥1 + 5𝑥2

⎤⎥
⎦

= ⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

15

[129]: solve(lgs, x)

[129]:
{𝑥0 ∶ − 8

17 − 10𝑖
17 , 𝑥1 ∶ 6

17 + 16𝑖
17 , 𝑥2 ∶ 3

17 − 9𝑖
17}

[130]: linsolve((A, v), xs) # erweiterte Matrix

[130]:
{(− 8

17 − 10𝑖
17 , 6

17 + 16𝑖
17 , 3

17 − 9𝑖
17)}

[131]: linsolve(A*x-v, xs) # Vektor/Liste mit Gleichungen

[131]:
{(− 8

17 − 10𝑖
17 , 6

17 + 16𝑖
17 , 3

17 − 9𝑖
17)}

[132]: linsolve([Eq(lgs.rhs[j], lgs.lhs[j]) for j in range(3)], xs)

[132]:
{(− 8

17 − 10𝑖
17 , 6

17 + 16𝑖
17 , 3

17 − 9𝑖
17)}

1.5.3 Matrizen mit Parameter/Ausdrücken

[133]: a = symbols("a")
A[0, 1] = a
A

[133]:
⎡⎢
⎣

−3 𝑎 −2
−1 1 1
2 3 5

⎤⎥
⎦

[134]: A.LUsolve(v).applyfunc(cancel)

[134]:
⎡
⎢
⎣

𝑎(−4−6𝑖)−4−8𝑖
7𝑎+4−6−16𝑖
7𝑎+4

𝑎(3+𝑖)+6+12𝑖
7𝑎+4

⎤
⎥
⎦

[135]: linsolve((A, v), xs)

[135]:
{(𝑎 (−4 − 6𝑖) − 4 − 8𝑖

7𝑎 + 4 , −6 − 16𝑖
7𝑎 + 4 , 𝑎 (3 + 𝑖) + 6 + 12𝑖

7𝑎 + 4)}

[139]: M = Matrix(2, 2, [a**2, 1 / (1 + a), a + 1, a - 1])
u = Matrix(2, 1, [1, 2])
M.gauss_jordan_solve(u)[0].applyfunc(cancel)

[139]:
[

𝑎2−3
𝑎4−𝑎2−𝑎−1

2𝑎2−𝑎−1
𝑎3−𝑎2−1

]

16

1.6 Polygone (Farbe, Marker, Liniendicke)

[140]: %matplotlib qt
import matplotlib.pyplot as plt

[141]: dreieck = np.array([[0, 0], [1, 0], [0, 1], [0, 0]])

[142]: fig, ax = plt.subplots()
ax.plot(dreieck[:, 0], dreieck[:, 1])
ax.axis('equal');

[145]: def n_eck(n):
theta = np.linspace(0, 2*np.pi, n+1)
return np.sin(theta), np.cos(theta)

[147]: fig, ax = plt.subplots()
ax.plot(n_eck(5))
ax.axis('equal');

[148]: fig, ax = plt.subplots()
for n in range(3, 9):

farbe = plt.cm.hot((n - 3) / 6) # das Argument von hot soll in [0 1] liegen
ax.plot(*n_eck(n), 'o-', color=farbe)

ax.axis('equal');

[149]: x = symbols('x')
f = S(1) / 7 * x**(S(3) / 2) * ((3 / 2)**(sqrt(x)) - floor((3 / 2)**(sqrt(x))))
f

[149]: 𝑥 3
2 (1.5

√𝑥 − ⌊1.5
√𝑥⌋)

7
[150]: fn = lambdify(x, f)

xn = np.linspace(0, 19.7, 500)
fig, ax = plt.subplots()
ax.plot(xn, fn(xn))

[150]: [<matplotlib.lines.Line2D at 0x7f038a0e3bc0>]

[151]: ax.plot(xn, fn(xn), xn, -fn(xn), linewidth=3, color='green');

[152]: fig, ax = plt.subplots()
ax.plot(fn(xn), -xn, -fn(xn), -xn, linewidth=4, color='green');
ax.axis('equal');

[153]: ax.plot([-.5, .5, .5, -.5, -.5],[-19.5, -19.5, -22, -22, -19.5], color='brown',␣
↪linewidth='4');

17

[154]: def n_stern(n):
x = [(0.5+ j % 2)*np.sin(np.pi*2*j/n) for j in range(2*n+1)]
y = [(0.5+ j % 2)*np.cos(np.pi*2*j/n) for j in range(2*n+1)]
return x, y

[156]: ax.plot(*n_stern(7), color='gold', linewidth=2.5);

18

	Lektion 10
	Vektoren
	transponieren und (transponieren und komplex konjugieren)
	Skalarprodukt

	Matrizen
	Slicing von Matrizen
	Werte eintragen
	Numpy Arrays
	Matrixvektorprodukt und Matrixmatrixprodukt
	spezielle Matrizen (Identität, Nullmatrix, Diagonalmatrix, Ones)
	Matrizen zusammenfügen
	Matrizen mit Iterator

	Kopieren von Matrizen
	Lineare Algebra
	Determinate und Inverse
	Funktionen angewandt auf eine Matrix
	charakteristisches Polynom
	Kern und Rang
	Gram Schmidt Orthogonalisierung

	Lösung linearer Gleichungssysteme
	Lösung mit speziellen Verfahren,
	Lösung mit `solve' und `linsolve'
	Matrizen mit Parameter/Ausdrücken

	Polygone (Farbe, Marker, Liniendicke)

