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1 Lektion 10
1.1 Vektoren

[1]: from sympy import *
init_printing()

Es gibt keine Vektoren nur 1 × 𝑛 und 𝑛 × 1 Matrizen.

[2]: v = Matrix([0 , 1+I, 1-I])
v

[2]:
⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

[3]: v = Matrix(3, 1, [0, 1+I, 1-I])
v

[3]:
⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

[4]: u = Matrix(1, 3, [3*I, 1+I, 1])
u

[4]: [3𝑖 1 + 𝑖 1]

[5]: display(u)
display(v)

[3𝑖 1 + 𝑖 1]

⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

[6]: v*u

[6]:
⎡⎢
⎣

0 0 0
3𝑖 (1 + 𝑖) (1 + 𝑖)2 1 + 𝑖
3𝑖 (1 − 𝑖) (1 − 𝑖) (1 + 𝑖) 1 − 𝑖

⎤⎥
⎦

[7]: u*v # Achtung das ist eine 1x1 Matrix

[7]: [1 − 𝑖 + (1 + 𝑖)2]

[8]: simplify((u*v)) # simplify wird eintragsweise angewandt, das gilt nicht für␣
↪alle Funktionen

[8]:
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[1 + 𝑖]

[9]: xs = symbols('x:3')
xs

[9]: (𝑥0, 𝑥1, 𝑥2)

[10]: x = Matrix(xs)
x

[10]:
⎡⎢
⎣

𝑥0
𝑥1
𝑥2

⎤⎥
⎦

1.1.1 transponieren und (transponieren und komplex konjugieren)

[11]: x.T*x # .T transponieren

[11]: [𝑥2
0 + 𝑥2

1 + 𝑥2
2]

[12]: x.transpose()*x

[12]: [𝑥2
0 + 𝑥2

1 + 𝑥2
2]

[13]: simplify((v.T*v)[0])

[13]: 0
[14]: v.conjugate(), v.C # .C konjugieren

[14]:
⎛⎜
⎝

⎡⎢
⎣

0
1 − 𝑖
1 + 𝑖

⎤⎥
⎦

, ⎡⎢
⎣

0
1 − 𝑖
1 + 𝑖

⎤⎥
⎦

⎞⎟
⎠

[15]: v.H # .H transponieren und komplex konjugieren

[15]: [0 1 − 𝑖 1 + 𝑖]

[16]: simplify((v.H*v)[0])

[16]: 4

1.1.2 Skalarprodukt

[17]: u, v

[17]:
⎛⎜
⎝

[3𝑖 1 + 𝑖 1] , ⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦

⎞⎟
⎠
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[18]: u.dot(v, hermitian=True).simplify() # Skalarprodukt .dot gibt einen Ausdruck␣
↪zurueck

[18]: 3 − 𝑖
[20]: simplify((u.conjugate() * v)) # Skalarprodukt

[20]: [3 − 𝑖]

[22]: simplify(u.C * v) # Skalarprodukt

[22]: [3 − 𝑖]

[23]: u.dot(v, hermitian=True, conjugate_convention='physics').simplify() #␣
↪Skalarprodukt, wobei v konjugiert wird

[23]: 3 + 𝑖
[25]: simplify(u * v.C)

[25]: [3 + 𝑖]

[26]: u.dot(v).simplify() # das ist kein Skalarprodukt für komplexe Vektorräume

[26]: 1 + 𝑖
[27]: simplify((u*v))

[27]: [1 + 𝑖]

1.2 Matrizen
[28]: A = Matrix([[1, 2], [3, 4]])

A

[28]:
[1 2
3 4]

[29]: A = Matrix(3, 3, range(1, 10))
A

[29]:
⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

[30]: A[1, 2]

[30]: 6
[31]: A.shape
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[31]: (3, 3)

1.2.1 Slicing von Matrizen

[32]: A[:, 0] # erste Spalte

[32]:
⎡⎢
⎣

1
4
7
⎤⎥
⎦

[33]: A.col(0)

[33]:
⎡⎢
⎣

1
4
7
⎤⎥
⎦

[34]: # vier Arten die letzte Zeile in der 3x3 Matrix A zu erhalten
A[A.shape[1] - 1, :], A[-1, :], A.row(A.shape[1] - 1), A.row(-1)

[34]: ([7 8 9] , [7 8 9] , [7 8 9] , [7 8 9])

[35]: A[0:2, 1:3]

[35]:
[2 3
5 6]

Beim Entfernen ‘delete’ von Spalten oder Zeilen wird die Matrix in place modifiziert

[36]: A.col_del(0)
A

[36]:
⎡⎢
⎣

2 3
5 6
8 9

⎤⎥
⎦

[37]: A.row_del(-1)
A

[37]:
[2 3
5 6]

Das Hinzufügen ‘insert’ von Spalten oder Zeilen erfolgt nicht in place.

[38]: A = A.row_insert(1, Matrix([[3, 4]]))
A

[38]:
⎡⎢
⎣

2 3
3 4
5 6

⎤⎥
⎦
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[39]: A = A.col_insert(-1, Matrix([1, 6, 1])) # unerwartet
A

[39]:
⎡⎢
⎣

2 1 3
3 6 4
5 1 6

⎤⎥
⎦

[40]: A.col_del(1)

[41]: A = A.row_join(Matrix(3, 1, [1, 6, 1]))
A

[41]:
⎡⎢
⎣

2 3 1
3 4 6
5 6 1

⎤⎥
⎦

1.2.2 Werte eintragen

[42]: A[0, 0] = 10

[43]: A

[43]:
⎡⎢
⎣

10 3 1
3 4 6
5 6 1

⎤⎥
⎦

[44]: A[0, :] = u
A

[44]:
⎡⎢
⎣

3𝑖 1 + 𝑖 1
3 4 6
5 6 1

⎤⎥
⎦

1.2.3 Numpy Arrays

Achtung !

Numpy Arrays haben Einträge von einem bestimmten Datentyp. Der Datentyp kann nach der
Erstellung des Arrays nicht geändert werden.

[45]: import numpy as np

An = np.array([[1, 2, 3], [4, 5, 6], [6, 7, 8]])
An

[45]: array([[1, 2, 3],
[4, 5, 6],
[6, 7, 8]])
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[46]: An = np.array(np.arange(1, 10)).reshape(3, 3)
An

[46]: array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

[47]: An[0, 0] = 1.4
An

[47]: array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

[48]: An = An.astype(float) # astype erzeugt eine Kopie
An

[48]: array([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]])

[49]: An[0, 0] = 1.4
An

[49]: array([[1.4, 2. , 3. ],
[4. , 5. , 6. ],
[7. , 8. , 9. ]])

[50]: An[1, 1] = 1 + 1j

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[50], line 1
----> 1 An[1, 1] = 1 + 1j

TypeError: float() argument must be a string or a real number, not 'complex'

[51]: Ac = An.astype(complex)
Ac[1, 1] = 1 + 1j
Ac

[51]: array([[1.4+0.j, 2. +0.j, 3. +0.j],
[4. +0.j, 1. +1.j, 6. +0.j],
[7. +0.j, 8. +0.j, 9. +0.j]])
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1.2.4 Matrixvektorprodukt und Matrixmatrixprodukt

[52]: A*v

[52]:
⎡⎢
⎣

1 − 𝑖 + (1 + 𝑖)2

10 − 2𝑖
7 + 5𝑖

⎤⎥
⎦

[53]: A*u

---------------------------------------------------------------------------
ShapeError Traceback (most recent call last)
Cell In[53], line 1
----> 1 A*u

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/core/decorators.py:118, in call_highest_priority.<locals>.
↪priority_decorator.<locals>.binary_op_wrapper(self, other)

116 if f is not None:
117 return f(self)

--> 118 return func(self, other)

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/matrices/matrixbase.py:2819, in MatrixBase.__mul__(self, other)

2790 @call_highest_priority('__rmul__')
2791 def __mul__(self, other):
2792 """Return self*other where other is either a scalar or a matrix
2793 of compatible dimensions.
2794
(…)
2816 matrix_multiply_elementwise
2817 """

-> 2819 return self.multiply(other)

File /local/home/schaedle/miniconda3/envs/compla24/lib/python3.12/site-packages/
↪sympy/matrices/matrixbase.py:2846, in MatrixBase.multiply(self, other,␣
↪dotprodsimp)

2843 elif T == "is_matrix":
2845 if self.shape[1] != other.shape[0]:

-> 2846 raise ShapeError(f"Matrix size mismatch: {self.shape} * {other.
↪shape}.")

2848 m = self._eval_matrix_mul(other)
2850 if isimpbool:

ShapeError: Matrix size mismatch: (3, 3) * (1, 3).

[54]: A*x
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[54]:
⎡⎢
⎣

3𝑖𝑥0 + 𝑥1 (1 + 𝑖) + 𝑥2
3𝑥0 + 4𝑥1 + 6𝑥2
5𝑥0 + 6𝑥1 + 𝑥2

⎤⎥
⎦

[55]: B = Matrix(3, 3, [0, 1, 0, 1, 0, 0, 0, 0, 1])
B

[55]:
⎡⎢
⎣

0 1 0
1 0 0
0 0 1

⎤⎥
⎦

[56]: A*B

[56]:
⎡⎢
⎣

1 + 𝑖 3𝑖 1
4 3 6
6 5 1

⎤⎥
⎦

[57]: B*A

[57]:
⎡⎢
⎣

3 4 6
3𝑖 1 + 𝑖 1
5 6 1

⎤⎥
⎦

1.2.5 spezielle Matrizen (Identität, Nullmatrix, Diagonalmatrix, Ones)

[58]: eye(4)

[58]:
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥
⎦

[59]: C = zeros(4, 3)
C

[59]:
⎡
⎢⎢
⎣

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥
⎦

[60]: C[1, 1] = 1
C

[60]:
⎡
⎢⎢
⎣

0 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥
⎦
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[61]: D = diag(*[1, 2, 3])
D

[61]:
⎡⎢
⎣

1 0 0
0 2 0
0 0 3

⎤⎥
⎦

[62]: diag(1, 2, 3)

[62]:
⎡⎢
⎣

1 0 0
0 2 0
0 0 3

⎤⎥
⎦

[63]: diag(A, B)

[63]:
⎡
⎢⎢⎢⎢⎢
⎣

3𝑖 1 + 𝑖 1 0 0 0
3 4 6 0 0 0
5 6 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

[64]: ones(2, 2)

[64]:
[1 1
1 1]

1.2.6 Matrizen zusammenfügen

[65]: Matrix([[A, B]])

[65]:
⎡⎢
⎣

3𝑖 1 + 𝑖 1 0 1 0
3 4 6 1 0 0
5 6 1 0 0 1

⎤⎥
⎦

[66]: Matrix.hstack(A, B)

[66]:
⎡⎢
⎣

3𝑖 1 + 𝑖 1 0 1 0
3 4 6 1 0 0
5 6 1 0 0 1

⎤⎥
⎦

[67]: Matrix.vstack(A, B)

[67]:
⎡
⎢⎢⎢⎢⎢
⎣

3𝑖 1 + 𝑖 1
3 4 6
5 6 1
0 1 0
1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥
⎦
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[68]: AB = Matrix([A, B])
AB

[68]:
⎡
⎢⎢⎢⎢⎢
⎣

3𝑖 1 + 𝑖 1
3 4 6
5 6 1
0 1 0
1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥
⎦

[69]: AB.reshape(1, len(AB))

[69]: [ 3𝑖 1 + 𝑖 1 3 4 6 5 6 1 0 1 0 1 0 0 0 0 1 ]

1.2.7 Matrizen mit Iterator

[70]: def hilb(i, j):
return 1/(i+j+1)

[71]: H = Matrix(3, 3, hilb) # Hilbertmatrix
H

[71]:
⎡⎢
⎣

1 1
2

1
31

2
1
3

1
41

3
1
4

1
5

⎤⎥
⎦

[72]: def superdiag(i, j, a):
if i == j-1:

return a[i]
else:

return 0

[73]: Sup = Matrix(4, 4, lambda i, j : superdiag(i, j, [1, 2, 3]))
Sup

[73]:
⎡
⎢⎢
⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥
⎦

1.3 Kopieren von Matrizen

[83]: B = Matrix(2, 2, range(4))
BB = B

[84]: BB, B

[84]:
([0 1

2 3] , [0 1
2 3])
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[85]: BB[0, 0] = 9

[86]: BB, B

[86]:
([9 1

2 3] , [9 1
2 3])

[87]: BBB = B.copy()
BBBB = B[:, :]

[88]: BBB[1, 1] = 99
BBBB[1, 1] = 99

[89]: BBBB, BBB, B

[89]:
([9 1

2 99] , [9 1
2 99] , [9 1

2 3])

1.4 Lineare Algebra
1.4.1 Determinate und Inverse

[90]: A = Matrix(3, 3, range(-4, 5)) + eye(3)
A, A.det()

[90]:
⎛⎜
⎝

⎡⎢
⎣

−3 −3 −2
−1 1 1
2 3 5

⎤⎥
⎦

, −17⎞⎟
⎠

[91]: Ainv = A**(-1)
Ainv

[91]:
⎡⎢
⎣

− 2
17 − 9

17
1

17
− 7

17
11
17 − 5

175
17 − 3

17
6

17

⎤⎥
⎦

[92]: A.inv()

[92]:
⎡⎢
⎣

− 2
17 − 9

17
1

17
− 7

17
11
17 − 5

175
17 − 3

17
6

17

⎤⎥
⎦

[93]: Ainv*A, A, Ainv

[93]:
⎛⎜
⎝

⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, ⎡⎢
⎣

−3 −3 −2
−1 1 1
2 3 5

⎤⎥
⎦

, ⎡⎢
⎣

− 2
17 − 9

17
1

17
− 7

17
11
17 − 5

175
17 − 3

17
6

17

⎤⎥
⎦

⎞⎟
⎠
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1.4.2 Funktionen angewandt auf eine Matrix

Elementweise Anwendung einer Funktion

[94]: A.applyfunc(lambda x: exp(x))

[94]:
⎡⎢
⎣

𝑒−3 𝑒−3 𝑒−2

𝑒−1 𝑒 𝑒
𝑒2 𝑒3 𝑒5

⎤⎥
⎦

Matrixfunktionen, definiert etwa über Potenzreihe

[95]: expA = A.exp()
expA

[95]:
⎡
⎢⎢⎢⎢
⎣

−(78701−55650
√

2)(11
√

2+16)𝑒1+3
√

2

(−246684+174432
√

2)(31
√

2+44) − (−3527+2494
√

2)(−16+11
√

2)
(−23148+16368

√
2)(−44+31

√
2)𝑒−1+3

√
2 + 𝑒

6 −(49−35
√

2)(11
√

2+16)𝑒1+3
√

2

(−264+186
√

2)(31
√

2+44) − 𝑒
3 − (−16+11

√
2)(−13+9

√
2)

(−44+31
√

2)(−24+18
√

2)𝑒−1+3
√

2 −(308−217
√

2)(11
√

2+16)𝑒1+3
√

2

(−5616+3972
√

2)(31
√

2+44) − (−468+331
√

2)(−16+11
√

2)
(−528+372

√
2)(−44+31

√
2)𝑒−1+3

√
2 + 𝑒

6

− 𝑒
3 − (−3527+2494

√
2)(2−

√
2)

(−23148+16368
√

2)(−5+4
√

2)𝑒−1+3
√

2 − (−2−
√

2)(78701−55650
√

2)𝑒1+3
√

2

(−246684+174432
√

2)(5+4
√

2) − (−13+9
√

2)(2−
√

2)
(−24+18

√
2)(−5+4

√
2)𝑒−1+3

√
2 + 2𝑒

3 − (−2−
√

2)(49−35
√

2)𝑒1+3
√

2

(−264+186
√

2)(5+4
√

2) − 𝑒
3 − (−468+331

√
2)(2−

√
2)

(−528+372
√

2)(−5+4
√

2)𝑒−1+3
√

2 − (−2−
√

2)(308−217
√

2)𝑒1+3
√

2

(−5616+3972
√

2)(5+4
√

2)
−3527+2494

√
2

(−23148+16368
√

2)𝑒−1+3
√

2 + 𝑒
6 + (78701−55650

√
2)𝑒1+3

√
2

−246684+174432
√

2 − 𝑒
3 + −13+9

√
2

(−24+18
√

2)𝑒−1+3
√

2 + (49−35
√

2)𝑒1+3
√

2

−264+186
√

2
−468+331

√
2

(−528+372
√

2)𝑒−1+3
√

2 + 𝑒
6 + (308−217

√
2)𝑒1+3

√
2

−5616+3972
√

2

⎤
⎥⎥⎥⎥
⎦

[96]: expA.applyfunc(simplify) # das macht es nicht besser

[96]:
⎡
⎢⎢⎢
⎣

−845180841𝑒6
√

2−158617322𝑒3
√

2−36836184
√

2+52094231+112159384
√

2𝑒3
√

2+597633104
√

2𝑒6
√

2

12(−79308661+56079692
√

2)𝑒−1+3
√

2
−13𝑒6

√
2−6

√
2𝑒3

√
2−3

√
2+5+8𝑒3

√
2+9

√
2𝑒6

√
2

6(−4+3
√

2)𝑒−1+3
√

2
−37587𝑒6

√
2−41114𝑒3

√
2−55650

√
2+78701+29072

√
2𝑒3

√
2+26578

√
2𝑒6

√
2

12(−20557+14536
√

2)𝑒−1+3
√

2

−270776706𝑒6
√

2−224318768
√

2𝑒3
√

2−46457938+32850723
√

2+317234644𝑒3
√

2+191468045
√

2𝑒6
√

2

12(−79308661+56079692
√

2)𝑒−1+3
√

2
1+4𝑒3

√
2+𝑒6

√
2

6𝑒−1+3
√

2
−12042𝑒6

√
2−58144

√
2𝑒3

√
2−70186+49629

√
2+82228𝑒3

√
2+8515

√
2𝑒6

√
2

12(−20557+14536
√

2)𝑒−1+3
√

2

−214697014
√

2𝑒6
√

2−158617322𝑒3
√

2−145010107+102537630
√

2+112159384
√

2𝑒3
√

2+303627429𝑒6
√

2

12(−79308661+56079692
√

2)𝑒−1+3
√

2
−287

√
2𝑒6

√
2−512

√
2𝑒3

√
2−1130+799

√
2+724𝑒3

√
2+406𝑒6

√
2

12(−181+128
√

2)𝑒−1+3
√

2
−9548

√
2𝑒6

√
2−41114𝑒3

√
2−219073+154908

√
2+29072

√
2𝑒3

√
2+13503𝑒6

√
2

12(−20557+14536
√

2)𝑒−1+3
√

2

⎤
⎥⎥⎥
⎦

1.4.3 charakteristisches Polynom

[97]: H.charpoly()

[97]:
PurePoly (𝜆3 − 23

15𝜆2 + 127
720𝜆 − 1

2160, 𝜆, 𝑑𝑜𝑚𝑎𝑖𝑛 = ℚ)

[98]: H.det()

[98]: 1
2160

[99]: H.trace()

[99]: 23
15

1.4.4 Kern und Rang

[100]: H.nullspace(), H.rank()

[100]: ([] , 3)
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[101]: CS = H.columnspace() # Basis des Bildes von H, wenn H von links operiert
RS = H.rowspace()
CS, RS

[101]:
⎛⎜
⎝

⎡⎢
⎣

⎡⎢
⎣

1
1
21
3

⎤⎥
⎦

, ⎡⎢
⎣

1
21
31
4

⎤⎥
⎦

, ⎡⎢
⎣

1
31
41
5

⎤⎥
⎦

⎤⎥
⎦

, [[1 1
2

1
3] , [0 1

12
1

12] , [0 0 1
2160]]⎞⎟

⎠

1.4.5 Gram Schmidt Orthogonalisierung

[102]: CSo = GramSchmidt(CS) # Orthogonalisierung
CSo

[102]:
⎡⎢
⎣

⎡⎢
⎣

1
1
21
3

⎤⎥
⎦

, ⎡⎢
⎣

− 5
9817

29413
196

⎤⎥
⎦

, ⎡⎢
⎣

1
2190

− 1
3651

365

⎤⎥
⎦

⎤⎥
⎦

[103]: n = len(CSo)
[(CSo[i].H * CSo[j])[0] for i in range(n) for j in range(n)]

[103]:
[49

36, 0, 0, 0, 73
7056, 0, 0, 0, 1

65700]

[109]: B = Matrix(CSo).reshape(3,3).T
B.H * B

[109]:
⎡⎢
⎣

49
36 0 0
0 73

7056 0
0 0 1

65700

⎤⎥
⎦

1.5 Lösung linearer Gleichungssysteme
1.5.1 Lösung mit speziellen Verfahren,

• LR Zerlegung (engl. LU decomposition) (mehr dazu in CompLA und Numerik I)
• QR Zerlegung (engl. QR decomposition) (mehr dazu in CompLa und Numerik I)
• Gaußelimination Schule/Lineare Algebra, hier wird das erweiterte lin-

eare System auf Zeilenstufenform (engl. row echelon form) gebracht.
https://en.wikipedia.org/wiki/Gaussian_elimination

Diese Verfahren sind für ‘symbolische’ Matrizen und Vektoren gedacht.

[110]: A

[110]:
⎡⎢
⎣

−3 −3 −2
−1 1 1
2 3 5

⎤⎥
⎦

[111]: A.LUsolve(v)

[111]:

14



⎡⎢
⎣

− 8
17 − 10𝑖

176
17 + 16𝑖

173
17 − 9𝑖

17

⎤⎥
⎦

[112]: A.QRsolve(v)

[112]:
⎡
⎢
⎢
⎣

√
14(− 8

√
14

17 − 10
√

14𝑖
17 )

14√
5( 6

√
5

17 + 16
√

5𝑖
17 )

5√
70( 3

√
70

70 − 9
√

70𝑖
70 )

17

⎤
⎥
⎥
⎦

[114]: A.gauss_jordan_solve(v)

[114]:
⎛⎜
⎝

⎡⎢
⎣

− 8
17 − 10𝑖

176
17 + 16𝑖

173
17 − 9𝑖

17

⎤⎥
⎦

, []⎞⎟
⎠

[115]: A.inv()*v

[115]:
⎡⎢
⎣

− 8
17 − 10𝑖

176
17 + 16𝑖

173
17 − 9𝑖

17

⎤⎥
⎦

[123]: B = Matrix(3, 4, range(12))
B.gauss_jordan_solve(Matrix(3, 1, [0, 1, 2])) # allgemeiner Lösungsraum, falls␣

↪B mehr Spalten als Zeilen hat

[123]:
⎛⎜⎜⎜⎜
⎝

⎡
⎢⎢
⎣

𝜏0 + 2𝜏1 + 1
4

−2𝜏0 − 3𝜏1
𝜏0
𝜏1

⎤
⎥⎥
⎦

, [𝜏0
𝜏1

]
⎞⎟⎟⎟⎟
⎠

1.5.2 Lösung mit ‘solve’ und ‘linsolve’

linsolve nutzt intern gauss_jordan_solve

[127]: x = Matrix(3, 1, xs)
x

[127]:
⎡⎢
⎣

𝑥0
𝑥1
𝑥2

⎤⎥
⎦

[128]: lgs = Eq(A*x, v)
lgs

[128]:
⎡⎢
⎣

−3𝑥0 − 3𝑥1 − 2𝑥2
−𝑥0 + 𝑥1 + 𝑥2

2𝑥0 + 3𝑥1 + 5𝑥2

⎤⎥
⎦

= ⎡⎢
⎣

0
1 + 𝑖
1 − 𝑖

⎤⎥
⎦
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[129]: solve(lgs, x)

[129]:
{𝑥0 ∶ − 8

17 − 10𝑖
17 , 𝑥1 ∶ 6

17 + 16𝑖
17 , 𝑥2 ∶ 3

17 − 9𝑖
17}

[130]: linsolve((A, v), xs) # erweiterte Matrix

[130]:
{(− 8

17 − 10𝑖
17 , 6

17 + 16𝑖
17 , 3

17 − 9𝑖
17)}

[131]: linsolve(A*x-v, xs) # Vektor/Liste mit Gleichungen

[131]:
{(− 8

17 − 10𝑖
17 , 6

17 + 16𝑖
17 , 3

17 − 9𝑖
17)}

[132]: linsolve([Eq(lgs.rhs[j], lgs.lhs[j]) for j in range(3)], xs)

[132]:
{(− 8

17 − 10𝑖
17 , 6

17 + 16𝑖
17 , 3

17 − 9𝑖
17)}

1.5.3 Matrizen mit Parameter/Ausdrücken

[133]: a = symbols("a")
A[0, 1] = a
A

[133]:
⎡⎢
⎣

−3 𝑎 −2
−1 1 1
2 3 5

⎤⎥
⎦

[134]: A.LUsolve(v).applyfunc(cancel)

[134]:
⎡
⎢
⎣

𝑎(−4−6𝑖)−4−8𝑖
7𝑎+4−6−16𝑖
7𝑎+4

𝑎(3+𝑖)+6+12𝑖
7𝑎+4

⎤
⎥
⎦

[135]: linsolve((A, v), xs)

[135]:
{(𝑎 (−4 − 6𝑖) − 4 − 8𝑖

7𝑎 + 4 , −6 − 16𝑖
7𝑎 + 4 , 𝑎 (3 + 𝑖) + 6 + 12𝑖

7𝑎 + 4 )}

[139]: M = Matrix(2, 2, [a**2, 1 / (1 + a), a + 1, a - 1])
u = Matrix(2, 1, [1, 2])
M.gauss_jordan_solve(u)[0].applyfunc(cancel)

[139]:
[

𝑎2−3
𝑎4−𝑎2−𝑎−1

2𝑎2−𝑎−1
𝑎3−𝑎2−1

]
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1.6 Polygone (Farbe, Marker, Liniendicke)

[140]: %matplotlib qt
import matplotlib.pyplot as plt

[141]: dreieck = np.array([[0, 0], [1, 0], [0, 1], [0, 0]])

[142]: fig, ax = plt.subplots()
ax.plot(dreieck[:, 0], dreieck[:, 1])
ax.axis('equal');

[145]: def n_eck(n):
theta = np.linspace(0, 2*np.pi, n+1)
return np.sin(theta), np.cos(theta)

[147]: fig, ax = plt.subplots()
ax.plot(n_eck(5))
ax.axis('equal');

[148]: fig, ax = plt.subplots()
for n in range(3, 9):

farbe = plt.cm.hot((n - 3) / 6) # das Argument von hot soll in [0 1] liegen
ax.plot(*n_eck(n), 'o-', color=farbe)

ax.axis('equal');

[149]: x = symbols('x')
f = S(1) / 7 * x**(S(3) / 2) * ((3 / 2)**(sqrt(x)) - floor((3 / 2)**(sqrt(x))))
f

[149]: 𝑥 3
2 (1.5

√𝑥 − ⌊1.5
√𝑥⌋)

7
[150]: fn = lambdify(x, f)

xn = np.linspace(0, 19.7, 500)
fig, ax = plt.subplots()
ax.plot(xn, fn(xn))

[150]: [<matplotlib.lines.Line2D at 0x7f038a0e3bc0>]

[151]: ax.plot(xn, fn(xn), xn, -fn(xn), linewidth=3, color='green');

[152]: fig, ax = plt.subplots()
ax.plot(fn(xn), -xn, -fn(xn), -xn, linewidth=4, color='green');
ax.axis('equal');

[153]: ax.plot([-.5, .5, .5, -.5, -.5],[-19.5, -19.5, -22, -22, -19.5], color='brown',␣
↪linewidth='4');
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[154]: def n_stern(n):
x = [(0.5+ j % 2)*np.sin(np.pi*2*j/n) for j in range(2*n+1)]
y = [(0.5+ j % 2)*np.cos(np.pi*2*j/n) for j in range(2*n+1)]
return x, y

[156]: ax.plot(*n_stern(7), color='gold', linewidth=2.5);
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