lektion10

December 17, 2025

Inhalt

1 Vektoren

1.1 transponieren und (transponieren und komplex konjugieren)
1.2 Skalarprodukt

2 Matrizen

2.1 Slicing von Matrizen

2.2 Werte eintragen

2.3 Numpy Arrays

2.4 Matrixvektorprodukt und Matrixmatrixprodukt
2.5 spezielle Matrizen (Identitét, Nullmatrix, Diagonalmatrix, Ones)
2.6 Matrizen zusammenfiigen

2.7 Matrizen mit Iterator

3 Kopieren von Matrizen

4 Lineare Algebra

4.1 Determinate und Inverse

4.2 Funktionen angewandt auf eine Matrix

4.3 charakteristisches Polynom

4.4 Kern und Rang

4.5 Gram Schmidt Orthogonalisierung

5 Losung linearer Gleichungssysteme

5.1 Losung mit speziellen Verfahren,

5.2 Losung mit ‘solve’ und ‘linsolve’

5.3 Matrizen mit Parameter/Ausdriicken

6 Polygone (Farbe, Marker, Liniendicke)

1 Lektion 10

1.1 Vektoren
[1]: |from sympy import *
init_printing()
Es gibt keine Vektoren nur 1 x n und n x 1 Matrizen.

[2]: = Matrix([0 , 1+I, 1-I])

A%
A%

[2]: 0
{Hi]
1—1

[3]: v = Matrix(3, 1, [0, 1+I, 1-I])

v
[3]: 0
{HZ-]
1—1
[4]: u = Matrix(1, 3, [3*I, 1+I, 1])
u
al: 30 1+ 1]
[56]: display(uw)
display(v)
[3i 144 1]
0
{Hi]
1—14
[6]: v*u
[6]: 0 0 0

3i(1+4) (1+0)° 1+
3i(1—i) (1—d)(141d) 1—i

[7]: uxv # Achtung das ist eine 1zl Matriz

U i)]

[8]: simplify((uxv)) # simplify wird eintragsweise angewandt, das gilt nicht fur,
<alle Funktionen

[8]:

[1+ 4]

[9]: xs = symbols('x:3')
XS

[9]:

(3307 L, $2)

[10]: = Matrix(xs)

X
X

[10]: z
Lo

1.1.1 transponieren und (transponieren und komplex konjugieren)

[11]: x.T*x # .T transponieren

A P

[12]: x.transpose()*x

A P

[13]: simplify((v.T*v) [0])

[13]: 0

[14]: |v.conjugate(), v.C # .C konjugieren

[14] : 0
1+

[15]: v.H # .H transponieren und komplex konjugieren

0
1—1
141

)

S 1o 1]

[16]: simplify((v.H*v) [0])

[16]: 4

1.1.2 Skalarprodukt

[17]: u, v

[17]: 0
([32' 1+i 1], !1+i]>
1—i

[18]:

u.dot(v, hermitian=True) .simplify() # Skalarprodukt .dot gibt einen Ausdruck,
<zurueck

[18]:

[20] :

[20] :

[22]:

[22]:

[23]:

3—i

simplify((u.conjugate() * v)) # Skalarprodukt
[3 1]

simplify(u.C * v) # Skalarprodukt

[3—1]

u.dot(v, hermitian=True, conjugate_convention='physics').simplify() #,
~Skalarprodukt, wobetr v konjugiert wird

[23]:

[25] :

[25] :

[26] :

3+
simplify(u * v.C)

3+

u.dot(v) .simplify() # das t¢st kein Skalarprodukt fur komplexze Vektorrdume

[26]:

[27]:

[27]:

[28]:

[28]:

[29] :

[29]

[30]:

1+
simplify ((u*v))

[1+ 4]

1.2 Matrizen

A = Matrix([[1, 21, [3, 411)

A
2
4

|

A = Matrix(3, 3, range(1l, 10))
A

T 3
7 9
Al1

» 2]

W =

oo Ot N

[30]:

[31]:

A .shape

[31]: (3, 3)

1.2.1 Slicing von Matrizen

[32]: A[:, O] # erste Spalte

[32]: 1
7

[33]: A.col(0)

[33]: 1
7

[34]: # vwier Arten die letzte Zeile in der 3z3 Matrix A zu erhalten
A[A.shape[1] - 1, :1, A[-1, :1, A.row(A.shape[l] - 1), A.row(-1)

[34]:([7 8 9]’ [7] 9]7 [7 8 9], [7 8 9])

[35]: A[0:2, 1:3]

[35]: 9 3
N

Beim Entfernen ‘delete’ von Spalten oder Zeilen wird die Matrix in place modifiziert

[36]: A.col_del(0)
A

[36]: 9 3
8 9

[37]: A.row_del(-1)
A

[37]: 9 3
;o

Das Hinzufiigen ‘insert’ von Spalten oder Zeilen erfolgt nicht in place.

[38]: A = A.row_insert (1, Matrix([[3, 411))
A

[38]: |:

Tt W N
S =~ W
| I — |

[39]: A = A.col_insert(-1, Matrix([1, 6, 1]1)) # unerwartet
A

[39]: 9 1 3
i:3 6 4}
51 6

[40]: A.col_del(1)

[41]: A = A.row_join(Matrix(3, 1, [1, 6, 11))
A

[41]: 9 3 1
i:3 4 6:|
5 6 1

1.2.2 Werte eintragen

[42]: A[O0, 0] = 10

[43]: A

[43] : 10 3 1
*:3 4 6]
5 6

[44]:|A[0, :] =u

3 4 6

[44]: Fz’ 144 1]
5 6 1

1.2.3 Numpy Arrays
Achtung !

Numpy Arrays haben Eintrdge von einem bestimmten Datentyp. Der Datentyp kann nach der
Erstellung des Arrays nicht gedndert werden.

[45]: import numpy as np

An = np.array([[1, 2, 3], [4, 5, 6], [6, 7, 811)
An

[45]: array([[1, 2, 3],
[4’ 59 6]’
6, 7, 811)

[46] :

[46] :

[47] :

[47] :

[48]:

[48] :

[49] :

[49] :

[50]:

[51]:

[51]:

An = np.array(np.arange(l, 10)) .reshape(3, 3)
An

array([[1, 2, 3],
[4’ 5, 6]’
(7, 8, 911D

An[0, 0] = 1.4
An

array([[1, 2, 3],
[4: 5, 6])
(7, 8, 911D

An = An.astype(float) # astype erzeugt eine Kopie
An

array([[1., 2., 3.1,
4., 5., 6.1,
(7., 8., 9.11)

An[0, 0] = 1.4

An
array([[1.4, 2. , 3. 1],
4. ,5.,6.1,
(7. , 8., 9.1D
An[1, 1] = 1 + 1j
TypeError Traceback (most recent call last)

Cell In[50], line 1
—e——> 1 B AT = 1o+ 1]

TypeError: float() argument must be a string or a real number, not 'complex'

Ac = An.astype(complex)
Ac[1, 11 = 1 + 1j
Ac

array([[1.4+0.j, 2. +0.j, 3. +0.j]1,
(4. +0.j, 1. +1.j, 6. +0.j],
[7. +0.j, 8. +0.j, 9. +0.311)

1.2.4 Matrixvektorprodukt und Matrixmatrixprodukt

[62]: Axv
B2 i (1)
10 —2¢
7+ 51
[63]: Axu
ShapeError Traceback (most recent call last)
Cell In[53], line 1

-—-> 1 B

File /local/home/schaedle/miniconda3/envs/compla24/1ib/python3.12/site-packages
«sympy/core/decorators.py:118, in call_highest _priority.<locals>.
opriority_decorator.<locals>.binary_op_wrapper (self, other)

116 if £ is not None:
117 return f(self)
--> 118 return func(self, other)

File /local/home/schaedle/miniconda3/envs/compla24/1ib/python3.12/site-packages
wsympy/matrices/matrixbase.py:2819, in MatrixBase.__mul__(self, other)
2790 @call_highest_priority('__rmul__')
2791 def _ _mul__(self, other):

2792 """Return self*other where other is either a scalar or a matrix
2793 of compatible dimensions.
2794
(.)
2816 matrix_multiply_elementwise
2817 R
-> 2819 return self .multiply(other)

File /local/home/schaedle/miniconda3/envs/compla24/1ib/python3.12/site-packages
osympy/matrices/matrixbase.py:2846, in MatrixBase.multiply(self, other,,

»dotprodsimp)
2843 elif T == "is_matrix":
2845 if self.shape[l] != other.shape[0]:
-> 2846 raise ShapeError(f"Matrix size mismatch: {self.shape} * {other.
~shapel}.")
2848 m = self._eval_matrix_mul (other)
2850 if isimpbool:

ShapeError: Matrix size mismatch: (3, 3) * (1, 3).

[54]: | Axx

3zy + 4z, + 6y

[54]: Fixo oy (1+4)+ x2]
9y + 621 + x4

[65]: B = Matrix(3, 3, [0, 1, O, 1, O, O, O, O, 11)

B
[65]: 010
1 0 0
0 0 1
[56]: A*B

L56]: FH‘ 3i 1]

4 3 6
6 5 1
[67]: B*A
3 14¢ 1
5 6 1

1.2.5 spezielle Matrizen (Identitit, Nullmatrix, Diagonalmatrix, Ones)

[68]: eye(4)

01 00
0010
0 0 0 1
[69]: C = zeros(4, 3)
C
[59]:

o O O O
o O O o
o O o o

[60]:|C[1, 1] =1

[60] :

o O o O
o O = O
o O O O

[61]: D = diag(*[1, 2, 3])
D

[61]: 100
{0 2 O}

0 0 3

[62]: diag(1l, 2, 3)

[62]: 100
{0 2 0}

0 0 3

[63]: diag(A, B)

631 r3; 144 1 0 0 0]
3 4 6000
5 6 1000
0 0 0010
0 0 0100
o 0 00 0 1]

[64]: omes(2, 2)

[64]: 11
i

1.2.6 Matrizen zusammenfiigen

[65]: Matrix([[A, Bl]])

(651 r3; 144 1 0 1 0
3 4 610 0
5 6 100

[66]: Matrix.hstack(A, B)

(661 r3; 145 1 0 1 0
3 4 6100
5 6 100

[67]: Matrix.vstack(A, B)

(671 r3 144 17
3 4 6
5 6 1
0 1 0
1 0 0
0o o 1]

[68]: AB = Matrix([A, B])

AB
[68]: r3 144 17
3 4 6
5 6 1
0 1 0
1 0 0
0o o0 1]

[69]: AB.reshape(l, len(AB))

S s 14 13 4656101010000 1]

1.2.7 Matrizen mit Iterator
[70]: def hilb(i, j):

return 1/(i+j+1)

[71]: |H = Matrix(3, 3, hilb) # Hilbertmatriz

[72]: def superdiag(i, j, a):
if i == j-1:
return ali]
else:

U= [=00 =
| I

NSl

return O

[73]: Sup = Matrix(4, 4, lambda i, j : superdiag(i, j, [1, 2, 31))
Sup

[73]:

o O O O
o O O
S O N O
O w o o

1.3 Kopieren von Matrizen

[83]: |B = Matrix(2, 2, range(4))
BB =B

[84]: BB, B

(BN)

11

[85]: |BB[O, 0] = 9

[86]: BB, B

(AR)

[87]: BBB = B.copy()
BBBB = B[:, :]

[(88]: BBB[1, 1] = 99
BBBB[1, 1] = 99

[89]: BBBB, BBB, B

(891 (1> oo > o] |5 3])

1.4 Lineare Algebra
1.4.1 Determinate und Inverse

[90]: A = Matrix(3, 3, range(-4, 5)) + eye(3)
A, A.det()

[90]: 3 _3 _9
([_1 1 1],17)
2 3 5

[91]: | Ainv = Axx(-1)

Ainv
[91]: 2 9 1
17 17 17
_ T 11 5
7 17 17
{ s 5 6]
17 17 17

[92]: | A.inv()
[92]: r_2 _ 9 1
17 17 17

{ Yoo 5]

[93]: Ainv*A, A, Ainv

(931 /r1 0 0] =3 —3 —2
010/, -1 1 1
00 1 2 3 5

oo™

| E— |
]
Sl
e
J@
|

=
Ju—
N

‘QQW:F

=
-

[94]:

[94] :

[95]:

[95]:

[96] :

[96] :

[971]:

[97]:

[98]:

[98]:

[99]:

[99]:

[100] :

[100] :

1.4.2 Funktionen angewandt auf eine Matrix
Elementweise Anwendung einer Funktion

A applyfunc(lambda x: exp(x))

Matrixfunktionen, definiert etwa iber Potenzreihe

expA = A.exp(Q)

expA
(78701-55650v/2) (11v/2+16) e +3v2 (—3527+2494V2) (~16+112) Lo (49-35v2) (11V2+16)el+3v2 (—16
(—246684+174432\/§) (31\/§+44) (—23148+16368\/§) (—44+31\@)e’1+3\5 6 (—264+186\/§) (31\/§+44) 3 (—44+31\
o (—3527+2494v2) (2—V2) (—2—v2) (78701556502) e +3V2 (-13+9v2)(2-v2) 42 (—2-
3 (—2314s+16368ﬁ) (—5+4\/§)671+3ﬁ (—246684+174432ﬁ) (5+4ﬁ) (—24—&-18\/5)(—5—0—4\/5)6*1*3\/5 3 (—2
3527424943 ey (78701-55650v/2)e1+3V2 e _1319v2 (49-3
(—23148+16368v/2)e 1+3v2 © 6 —246684+174432V/2 377 (F24118V2)e 13V2 96
expA.applyfunc(simplify) # das macht es nicht besser
—845180841e8V2—158617322¢3V2—368361841/2+52094231+1121593841/2¢3V24+597633104/2€5V2 —13e8V2_6/2e3V2_3,/24548e3V
12(—79308661+56079692\/§)e*1+3\/7 6(—4+3\/§)371+3ﬁ
—270776706e5V2—224318768v/2¢3V2—46457938+32850723v/2+317234644e3V2+191468045/25V2 1+4e3V24e6V2

12(—79308661+56079692\/§)e*1+3\/§

66—1+3\/§

—2146970141/2e5V2—-158617322¢3V2—-145010107+102537630v/2+1121593841/2e3V2+303627429¢5V2 —2871/2e6V2—5121/2¢3Y2—1130+799+/2+

12(—79308661+56079692\/§)e*1+3\/§

1.4.3 charakteristisches Polynom
H.charpoly ()

23 127 1
3 _ 2 - n =
PurePoly </\ 15)\ + 720)\ 21607)\’ domain Q)
H.det ()

1
2160

H.trace()

23
15

1.4.4 Kern und Rang

H.nullspace(), H.rank()

@3

13

12(—181+128\/§)e*1+3v

[101]:

[101]:

[102]:

[102] :

[103]:

[103]:

[109] :

[109] :

[110]:

[110]:

[111]:

[111]:

CS
RS

H.columnspace() # Basis des Bildes von H, wenn H von links opertiert
H.rowspace ()

CS, RS

(L

1.4.5

|

CSo
CSo

{

n =

” [t 2 5[0 5 %], [00 21160]])

I

Gram Schmidt Orthogonalisierung

B N [
(S NN

= GramSchmidt(CS) # Orthogonalisierung

_35 _1

98 2190

nva L

> | 204 |0 365
A3 L
196 365

len(CSo)

[(CSo[i] .H * CSo[j]) [0] for i in range(n) for j in range(n)]

E
36’
B 3
B.H

49
36
{0
0

1.5

0. 0.0, 13 1 }

7056’ 00,0 65700

Matrix(CSo) .reshape(3,3).T
* B

0 0
73
7056 0

1
0 65700

Losung linearer Gleichungssysteme

1.5.1 Losung mit speziellen Verfahren,

LR Zerlegung (engl. LU decomposition) (mehr dazu in CompLA und Numerik I)

QR Zerlegung (engl. QR decomposition) (mehr dazu in CompLa und Numerik I)
Gauflelimination Schule/Lineare Algebra, hier wird das erweiterte lin-
eare System auf Zeilenstufenform (engl. row echelon form) gebracht.
https://en.wikipedia.org/wiki/Gaussian_elimination

Diese Verfahren sind fiir ‘symbolische’ Matrizen und Vektoren gedacht.

A

-3
—1
2

-3 -2
1 1
3 5

A .LUsolve(v)

14

_8 _ 10i
617 161‘7

1
7T a7
3 _w
17 1

[112]: A.QRsolve(v)

[112]: m(_%?_lo{?i)

\/5(67\/311 16\/571)
17 17

[114]:

[114]: 8
17 17

[115]: A.inv(Q)*v

[115]: 8 10i
617 1617
7
17 T I7
3 _ %
1

[123]: B = Matrix(3, 4, range(12))
B.gauss_jordan_solve(Matrix(3, 1, [0, 1, 2])) # allgemeiner Lésungsraum, falls,

~B mehr Spalten als Zeilen hat

To
71

[123] : 7_0 + 27—1 + i
To
Y 7_1
1.5.2 Losung mit ‘solve’ und ‘linsolve’

linsolve nutzt intern gauss_ jordan_ solve

x = Matrix(3, 1, xs)
X

[127]:
[127]: 2,
Ty
Lo
[128]: 1lgs = Eq(A*x, v)
1gs
[1281: r_3; 32, — 2, 0
1—1

2zy + 3z, + by

15

[129]: solve(lgs, x)

[1293‘{ 8 _ 16 6 16 .3%}
Yol Ty Ty i Ty 2 Ty

[130]: linsolve((A, v), xs) # erweiterte Matriz
[130]: {(8 10i 6 16i 3 91)}

17 177 17 177 17 17
[131]: linsolve(A*x-v, xs) # Vektor/Liste mit Gleichungen
fl?’”:{(LI)

17 17’ 17 177 17 17
[132] : linsolve([Eq(lgs.rhs[j], lgs.lhs[j]) for j in range(3)], xs)
“321:{<_8_10i L)

17 177 17 177 17 17

1.5.3 Matrizen mit Parameter/Ausdriicken

[133]: a = symbols("a")

A[O, 1] = a

A

{1 1 1 }
2 3 5

[134] : A.LUsolve(v).applyfunc(cancel)

[134]: ra(-4—6i)-4-8i

Tatd
6161

Ta+4
a(341)+6+124¢
Ta+4

[135]: linsolve((A, v), xs)

[135): (/g (—4—6i)—4—8i —6—16i a(3+1i)+ 6+ 12
Ta+4 T Ta+4 7 Ta+4

[139]: M = Matrix(2, 2, [a**2, 1 / (1 + a), a + 1, a - 1])
u = Matrix(2, 1, [1, 21)
M.gauss_jordan_solve(u) [0] .applyfunc(cancel)

[139] : w23
[aéx_az_aq]

2a°—a—1
a3—a?—1

16

1.6 Polygone (Farbe, Marker, Liniendicke)

[140]: Ymatplotlib qt
import matplotlib.pyplot as plt

[141]: dreieck = np.array([[0, 0], [1, 0], [0, 1], [0, 011)
[142]: fig, ax = plt.subplots()

ax.plot(dreieck[:, 0], dreieck[:, 1])
ax.axis('equal');

[145]: def n_eck(n):
theta = np.linspace(0, 2*np.pi, n+1)
return np.sin(theta), np.cos(theta)

[147]: fig, ax = plt.subplots()
ax.plot(n_eck(5))
ax.axis('equal');

[148]: fig, ax = plt.subplots()
for n in range(3, 9):
farbe = plt.cm.hot((n - 3) / 6) # das Argument von hot soll in [0 1] liegen
ax.plot(*n_eck(n), 'o-', color=farbe)
ax.axis('equal');

[149]: x = symbols('x')

f=80) /7 xxx(8(3) / 2) *x ((8/ 2)x*(sqrt(x)) - floor((3 / 2)**(sqrt(x))))
f
[1491: (1.5V% - [1.5V7])
7
[150]: fn = lambdify(x, f)
xn = np.linspace(0, 19.7, 500)

fig, ax = plt.subplots()
ax.plot(xn, fn(xn))

[150]: [<matplotlib.lines.Line2D at 0x7£038a0e3bc0>]
[151]: ax.plot(zxn, fn(xn), xn, -fn(xn), linewidth=3, color='green');
[152]: fig, ax = plt.subplots()

ax.plot(fn(xn), -xn, -fn(xn), -xn, linewidth=4, color='green');

ax.axis('equal');

[153]: ax.plot([-.5, .5, .5, -.5, -.5],[-19.5, -19.5, -22, -22, -19.5], color='brown',
~linewidth='4"');

17

[154]: def n_stern(n):
x = [(0.5+ j % 2)*np.sin(np.pi*2*j/n) for j in range(2*n+1)]
y = [(0.5+ j % 2)*np.cos(np.pi*2+*j/n) for j in range(2*n+1)]
return x, y

[156]: ax.plot(*n_stern(7), color='gold', linewidth=2.5);

18

	Lektion 10
	Vektoren
	transponieren und (transponieren und komplex konjugieren)
	Skalarprodukt

	Matrizen
	Slicing von Matrizen
	Werte eintragen
	Numpy Arrays
	Matrixvektorprodukt und Matrixmatrixprodukt
	spezielle Matrizen (Identität, Nullmatrix, Diagonalmatrix, Ones)
	Matrizen zusammenfügen
	Matrizen mit Iterator

	Kopieren von Matrizen
	Lineare Algebra
	Determinate und Inverse
	Funktionen angewandt auf eine Matrix
	charakteristisches Polynom
	Kern und Rang
	Gram Schmidt Orthogonalisierung

	Lösung linearer Gleichungssysteme
	Lösung mit speziellen Verfahren,
	Lösung mit `solve' und `linsolve'
	Matrizen mit Parameter/Ausdrücken

	Polygone (Farbe, Marker, Liniendicke)

