MATHEMATISCHES INSTITUT
PROF. DR. ACHIM SCHÄDLE
ANDREAS TROLL

10. November 2015

Numerik II -1. Quicky

Fragenblock: 1. Ist $A \in \mathbb{C}^{n \times n}$ und λ ist ein Eigenwert von A , dann ist $-\lambda$ ein Eigenwert von A . [2. Ist $A \in \mathbb{R}^{n \times n}$ mit $A = A^T$, so sind alle Eigenwerte reell. [3. Jede Matrix ist ähnlich zu einer Matrix in Jordannormalform. [4. Ist mindestens ein Eigenwert von $A \in \mathbb{C}^{n \times n}$ ungleich 0 , so ist A invertierbar. [5. Die Berechnung der schnellen Fouriertransformation benötigt $\mathcal{O}(\sqrt{N}\log N)$ Operationen. [6. Es gilt: $\sum_{k=0}^{N-1} \omega_N^{-lk} \omega_N^{kj} = N$ für $l = k + 17N$ [7. Sei $x \in \mathbb{C}^N$. Es gilt: $\max_{k=1N} (x_k) = \max_{k=1N} (\mathcal{F}_N(x)_k)$ [8. Es gilt $\mathcal{F}_N(x) \cdot \frac{1}{N} \mathcal{F}_N(x) = 1$, falls $x \in \mathbb{C}^N \setminus \mathbb{R}^N$. [falsch	
 Ist A∈ ℝ^{n×n} mit A = A^T, so sind alle Eigenwerte reell. Jede Matrix ist ähnlich zu einer Matrix in Jordannormalform. Ist mindestens ein Eigenwert von A∈ ℂ^{n×n} ungleich 0, so ist A invertierbar. Die Berechnung der schnellen Fouriertransformation benötigt O(√N log N) Operationen. Es gilt: ∑_{k=0}^{N-1} ω_N^{-lk} ω_N^{kj} = N für l = k + 17N Sei x∈ ℂ^N. Es gilt: max_{k=1N}(x_k) = max_{k=1N}(F_N(x)_k) Es gilt F_N(x) · ½ F_N(x) = 1, falls x∈ ℂ^N \ ℝ^N. 		.]
 Jede Matrix ist ähnlich zu einer Matrix in Jordannormalform. [Ist mindestens ein Eigenwert von A ∈ C^{n×n} ungleich 0, so ist A invertierbar. [Die Berechnung der schnellen Fouriertransformation benötigt O(√N log N) Operationen. [Es gilt: ∑_{k=0}^{N-1} ω_N^{-lk} ω_N^{kj} = N für l = k + 17N [Sei x ∈ C^N. Es gilt: max_{k=1N}(x_k) = max_{k=1N}(F_N(x)_k) [Es gilt F_N(x) ⋅ ½ F_N(x) = 1, falls x ∈ C^N \ R^N. []
 Ist mindestens ein Eigenwert von A ∈ C^{n×n} ungleich 0, so ist A invertierbar. [Die Berechnung der schnellen Fouriertransformation benötigt O(√N log N) Operationen. [Es gilt: ∑_{k=0}^{N-1} ω_N^{-lk} ω_N^{kj} = N für l = k + 17N [Sei x ∈ C^N. Es gilt: max_{k=1N}(x_k) = max_{k=1N}(F_N(x)_k) [Es gilt F_N(x) ⋅ ½_NF_N(x) = 1, falls x ∈ C^N \ R^N. []
 5. Die Berechnung der schnellen Fouriertransformation benötigt O(√N log N) Operationen. [6. Es gilt: ∑_{k=0}^{N-1} ω_N^{-lk} ω_N^{kj} = N für l = k + 17N [7. Sei x ∈ C^N. Es gilt: max_{k=1N}(x_k) = max_{k=1N}(F_N(x)_k) [8. Es gilt F_N(x) · ½F_N(x) = 1, falls x ∈ C^N \ R^N. []
Operationen. [6. Es gilt: $\sum_{k=0}^{N-1} \omega_N^{-lk} \omega_N^{kj} = N$ für $l = k + 17N$ [7. Sei $x \in \mathbb{C}^N$. Es gilt: $\max_{k=1N} (x_k) = \max_{k=1N} (\mathcal{F}_N(x)_k)$ [8. Es gilt $\mathcal{F}_N(x) \cdot \frac{1}{N} \mathcal{F}_N(x) = 1$, falls $x \in \mathbb{C}^N \setminus \mathbb{R}^N$. []
7. Sei $x \in \mathbb{C}^N$. Es gilt: $\max_{k=1N}(x_k) = \max_{k=1N}(\mathcal{F}_N(x)_k)$ [8. Es gilt $\mathcal{F}_N(x) \cdot \frac{1}{N} \mathcal{F}_N(x) = 1$, falls $x \in \mathbb{C}^N \setminus \mathbb{R}^N$.]
8. Es gilt $\mathcal{F}_N(x) \cdot \frac{1}{N} \mathcal{F}_N(x) = 1$, falls $x \in \mathbb{C}^N \setminus \mathbb{R}^N$.]
]
]
9. Für die Faltung zweier Vektoren y, x gilt $x \star y = y \star x$.]
10. Die Berechnung der inversen Fouriertransformation benötigt doppelt so viele Operationen wie die der Fouriertransformation.]
11. Bei der Tychonoff-Regularisierung wird ein Minimierungsproblem gelöst. []

Das	Tempo der	Vorlesung	ist zu schne	Il \square , okay \square ,	zu langsam l	□.
Die	Übungsaufg	aben sind	zu einfach 🗆	I, gerade richt	ig □, zu sch	wierig \square .