Computergestützte Mathematik zur Linearen Algebra

Singulärwertzerlegung

Achim Schädle

Übungsleiter: Lennart Jansen

Tutoren: Marina Fischer, Kerstin Ignatzy, Narin Konar Pascal Kuhn, Nils Sänger, Tran Dinh

8. Januar 2015

Symmetrische Matrizen

Erinnerung: Für $A \in \mathbb{R}^{n,n}$ symmetrisch, dann gilt

- alle Eigenwerte von A sind reell
- es gibt eine Orthonormalbasis $\{q_1, \ldots, q_n\}$ von Eigenvektoren von A:

$$Q^T A Q = D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

wobei
$$Q = [q_1 \mid \ldots \mid q_n]$$
 orthogonal $(Q^T Q = QQ^T = I)$

• Es gilt: Rang(A) = p genau dann, wenn genau p Eigenwerte λ_j von Null verschieden sind.

Eigenschaften von A^TA

Lemma. Es sei $A \in \mathbb{R}^{m,n}$, $m \ge n$.

- \bullet A^TA ist symmetrisch und positiv semidefinit.
- ② A^TA ist genau dann positiv definit, wenn $kern(A) = \{0\}$.
- In jedem Fall gilt

$$kern(A^T A) = kern(A)$$

 $bild(A^T A) = bild(A^T) = kern(A)^{\perp}$

Beweis

 \bullet A^TA symmetrisch ist offensichtlich. Ferner ist

$$x^T A^T A x = (Ax)^T (Ax) = ||Ax||^2 \ge 0$$
 für alle x ,

d.h. A^TA positiv semidefinit und $kern(A^TA) \subset kern(A)$. Wegen $kern(A) \subset kern(A^TA)$ folgt $kern(A^TA) = kern(A)$.

• $bild(A^TA) \subset bild(A^T)$ ist klar, Gleichheit folgt aus

dim bild
$$(A^T A) = n - \dim \ker(A^T A) = n - \dim \ker(A)$$

= rang $(A) = \dim \operatorname{bild}(A) = \dim \operatorname{bild}(A^T)$.

• Seien $z \in \text{bild}(A^T)$ und $x \in \text{kern}(A)$ beliebig, dann gibt es $y \in \mathbb{R}^m$ mit $z = A^T y$ und $x^T z = x^T A^T y = (Ax)^T y = 0$.

Singulärwertzerlegung

Es sei $A \in \mathbb{R}^{m,n}$, $m \ge n$ mit $\mathsf{Rang}(A) = p$. $\lambda_1, \ldots, \lambda_n$ seien die absteigend sortierten Eigenwerte von $A^T A$

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_p > \lambda_{p+1} = \ldots = \lambda_n = 0$$

und $v_1, \ldots, v_n \in \mathbb{R}^n$ sei eine Orthonormalbasis von Eigenvektoren (von A^TA). Definiere

$$u_i = \frac{1}{\sqrt{\lambda_i}} A v_i, \qquad i = 1, \dots, p,$$

dann gilt

$$u_i^T u_j = \frac{1}{\sqrt{\lambda_i}} \frac{1}{\sqrt{\lambda_j}} (A v_i)^T A v_j = \frac{1}{\sqrt{\lambda_i \lambda_j}} v_i^T (A^T A) v_j = \frac{\lambda_j}{\sqrt{\lambda_i \lambda_j}} v_i^T v_j = \delta_{ij}$$

Singulärwertzerlegung II

Damit ist $\{u_1, \ldots, u_p\}$ eine Orthonormalbasis von Bild(A), denn

$$\dim \operatorname{bild}(A) = \dim \operatorname{bild}(A^T A) = \operatorname{rang}(A^T A) = p$$

Ergänze diese durch weitere m-p Vektoren u_{p+1},\ldots,u_m zu einer Orthonormalbasis von \mathbb{R}^m . Diese Vektoren spannen $\operatorname{bild}(A)^{\perp}=\ker(A^T)$ auf:

$$A^{T}u_{i} = \frac{1}{\sqrt{\lambda_{i}}}A^{T}Av_{i} = \sqrt{\lambda_{i}}v_{i}, \qquad i = 1, \dots, p$$

$$A^{T}u_{i} = 0 \qquad i = p + 1, \dots, m$$

Singulärwertzerlegung III

Definition und Satz. Jede Matrix $A \in \mathbb{K}^{m,n}$ mit rang(A) = p besitzt eine Singulärwertzerlegung, d.h. ein System

$$\{\sigma_i, u_j, v_k \mid i = 1, \dots, p, j = 1, \dots, m, k = 1, \dots, n\}$$

mit $\sigma_1 \geq \sigma_2 \geq \ldots, \geq \sigma_p > 0$ und Orthonormalbasen $\{u_j\}_{j=1}^m$ und $\{v_k\}_{k=1}^n$ des \mathbb{K}^m bzw. \mathbb{K}^n , wobei

$$Av_i = \sigma_i u_i,$$
 $A^T u_i = \sigma_i v_i,$ $i = 1, ..., p,$
 $Av_k = 0,$ $A^T u_j = 0,$ $j, k > p$

 σ_i heißen Singulärwerte von A, v_i rechte und u_i linke Singulärvektoren.

Singulärwertzerlegung IV

In Matrizenschreibweise:

$$U = [u_1, \dots, u_m] \in \mathbb{R}^{m,m}, \qquad V = [v_1, \dots, v_n] \in \mathbb{R}^{n,n}$$

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ & \ddots & & \vdots \\ 0 & & \sigma_p & 0 \\ 0 & \cdots & 0 & 0 \end{bmatrix}$$

Dann gilt $U^T U = I$, $V^T V = I$ und

$$A = U\Sigma V^{T}, \qquad A^{T} = V\Sigma^{T}U^{T}, \qquad \Sigma = U^{T}AV,$$

$$A = \sum_{i=1}^{p} \sigma_{i}u_{i}v_{i}^{T}, \qquad A^{T} = \sum_{i=1}^{p} \sigma_{i}v_{i}u_{i}^{T}$$

Geometrische Interpretation

Durchlaufen die Vektoren

$$x = \alpha_i v_i + \alpha_j v_j + \alpha_k v_k, \qquad ||x||^2 = \alpha_i^2 + \alpha_j^2 + \alpha_k^2 = 1$$

die Einheitskugel des Unterraums span $\{v_i, v_j, v_k\}$, dann durchlaufen ihre Bilder

$$Ax = \sigma_i \alpha_i u_i + \sigma_j \alpha_j u_j + \sigma_k \alpha_k u_k, = \beta_i u_i + \beta_j u_j + \beta_k u_k,$$

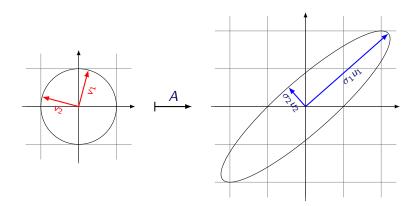
ein Ellipsoid in dem durch u_i, u_j und u_k aufgespannten Teilraum des \mathbb{R}^m , denn

$$\frac{1}{\sigma_i^2}\beta_i^2 + \frac{1}{\sigma_j^2}\beta_j^2 + \frac{1}{\sigma_k^2}\beta_k^2 = \alpha_i^2 + \alpha_j^2 + \alpha_k^2 = 1$$

(Ellipsoid mit Scheitelpunkten $(\pm \sigma_i, 0, 0)$, $(0, \pm \sigma_j, 0)$, $(0, 0, \pm \sigma_k)$ in den zu (u_i, u_j, u_k) gehörenden Koordinaten.)

Beispiel

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$
, Matlab: [U,S,V] = svd(A)



Eigenwert- / Singulärwertzerlegung

Für $A \in \mathbb{R}^{n,n}$ diagonalisierbar gibt es $X \in \mathbb{C}^{n,n}$ nicht singulär mit

$$A = X \Lambda X^{-1}, \qquad \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{C}^{n,n}$$

Für $A \in \mathbb{R}^{m,n}$ beliebig gibt es orthogonale Matrizen $U \in \mathbb{R}^{m,m}$, $V \in \mathbb{R}^{n,n}$ mit

$$A = U\Sigma V^T$$
, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) \in \mathbb{R}^{m,n}$

mit $\sigma_i \geq 0$.

Anwendung

Satz. Sei
$$A=U\Sigma V^T=\sum_{i=1}^n\sigma_iu_iv_i^T$$
 und $A_k=\sum_{i=1}^k\sigma_iu_iv_i^T$. Dann gilt
$$||A-A_k||_2\leq ||A-B||_2$$

für alle Matrizen B mit rang B = k und $||A - A_k|| = \sigma_{k+1}$. Es gilt auch $A_k = U\Sigma_k V^T$ mit $\Sigma_k = \text{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, k)$

Anwendung: Datenkompression

Vektornormen

Definition:

Eine Abbildung $||\cdot||: \mathbb{C}^n \to \mathbb{R}$ heißt Vektornorm, wenn

- $||x|| \ge 0$ für alle x und $||x|| = 0 \iff x = 0$ (Positivität)
- $||x+y|| \le ||x|| + ||y||$ (Dreiecksungleichung)
- **3** $||\alpha x|| = |\alpha| ||x||$

Eine Abbildung $||\cdot||:\mathbb{C}^{m,n}\to\mathbb{R}$ heißt Matrixnorm, wenn $||\cdot||$ eine Vektornorm ist und zusätzlich

 $||AB|| \le ||A|| ||B||$ für alle A, B für die AB existiert

Beispiele/Aufgabe

Schreiben Sie eine Matlab-Funktion plotnorm(p), welche die Menge $\{x \in \mathbb{R}^2 \mid ||x||_p \leq 1\}$ plottet.

$$||x||_{1} = \sum_{i=1}^{n} |x_{i}|$$

$$||x||_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} = \sqrt{x^{T}x}$$

$$||x||_{\infty} = \max_{i=1}^{n} |x_{i}|$$

$$||x||_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

$$(1 \le p < \infty)$$

Induzierte Matrixnormen

Seien $||\cdot||_{(n)}$ und $||\cdot||_{(m)}$ Vektornorm über \mathbb{R}^n bzw. \mathbb{R}^m . Durch

$$||A||_{(m,n)} = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_{(m)}}{||x||_{(n)}} = \sup_{x \in \mathbb{R}^n, ||x|| = 1} ||Ax||_{(m)}$$

wird eine (von einer Vektornorm) induzierte Matrixnorm auf $\mathbb{R}^{m,n}$ definiert.

Beispiele: $||A||_1$ und $||A||_{\infty}$

Sei $A = [a_1 \mid a_2 \mid \cdots \mid a_n] \in \mathbb{C}^{m,n}$ und $||x||_1 = 1$:

$$||Ax||_1 = ||\sum_{j=1}^n x_j a_j||_1 \le \sum_{j=1}^n |x_j|||a_j||_1 \le \max_{1 \le j \le n} ||a_j||_1$$

Damit: $||A||_1 \le \max_{1 \le j \le n} ||a_j||_1$

Für $x = e_k$, wobei k so, dass $||a_k||_1 = \max_{1 \le j \le n} ||a_j||_1$, gilt Gleichheit, also

$$||A||_1 = \max_{1 \le i \le n} ||a_j||_1$$
 maximale Spaltensummennorm

analog:

$$||A||_{\infty} = \max_{1 \le i \le n} ||A(i,:)^T||_1$$
 maximale Zeilensummennorm