Computergestützte Mathematik zur Linearen Algebra

Erinnerungen an LinA Teil II

Achim Schädle

Übungsleiter: Lennart Jansen

Tutoren: Marina Fischer, Kerstin Ignatzy, Narin Konar Pascal Kuhn, Nils Sänger, Tran Dinh

18. Dezember 2014

Bilinearformen

Definition

Sei V ein \mathbb{R} -Vektorraum. Eine Abbildung a : $V \times V \to \mathbb{K}$ heißt Bilinearform, falls

- a(u, v + w) = a(u, v) + a(u, w)
- a(u + w, v) = a(u, v) + a(w, v)
- $a(\alpha u, v) = \alpha a(u, v)$
- $a(u, \alpha v) = \alpha a(u, v)$

für alle Vektoren u, v, w und $\alpha \in \mathbb{K}$ gilt.

Sesquilinearformen

Definition

Sei V ein \mathbb{C} -Vektorraum. Eine Abbildung a : $V \times V \to \mathbb{C}$ heißt Sesquilinearform, falls

- a(u, v + w) = a(u, v) + a(u, w)
- a(u + w, v) = a(u, v) + a(w, v)
- $a(\alpha u, v) = \alpha a(u, v)$
- $a(u, \alpha v) = \overline{\alpha} a(u, v)$

für alle Vektoren u, v, w und $\alpha \in \mathbb{C}$ gilt.

Skalarprodukt / inneres Produkt

Definition

Eine Bilinearform a : $V \times V \to \mathbb{R}$ heißt symmetrisch, falls

$$\mathsf{a}(u,v)=\mathsf{a}(v,u)$$

Eine Sesquilinearform a : $V \times V \to \mathbb{C}$ heißt hermitesch falls

$$\mathsf{a}(u,v) = \overline{\mathsf{a}(v,u)}$$

Gilt zusätzlich $a(u, u) \ge 0$ und folgt aus a(u, u) = 0, dass u = 0 ist, so heißt die Bilinearform/Sesquilinearform positiv definit.

Definition

Eine symmetrische positiv definite Bilinearform oder eine hermitesche positive definite Sesquilinearform ist ein *Skalarprodukt*.

Beispiele

Für $u, v \in \mathbb{R}^n$ ist

$$(u,v) \mapsto \sum_{k=1}^n u_k v_k =: \langle u,v \rangle := u^T v$$

ein Skalarprodukt. (Das euklidische Skalarprodukt des \mathbb{R}^n) Für $u,v\in\mathbb{C}^n$ ist

$$(u,v)\mapsto \sum_{k=1}^n \bar{u}_k v_k =: \langle u,v\rangle := u^H v$$

ein Skalarprodukt.

Skalarprodukte

Auf dem Vektorraum der Polynome vom Grad kleiner gleich k, \mathbb{P}_k , sei

$$(p,q)\mapsto \int_{-1}^1 p(x)q(x)dx$$

Ist diese Abbildung ein Skalarprodukt?

Norm

Definition

Sei V ein Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$. Für ein $x \in V$ ist $||x|| := \sqrt{\langle x, x \rangle}$ die Länge oder *Norm* von x.

Beispiel:

Für $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ ist

$$||x|| = \left(\sum_{i=1}^{n} x_i\right)^2$$

die euklidische Länge von x.

Unitäre und Orthogonale Abbildungen

Definition

Sei A eine lineare Abbildung auf einem \mathbb{R} -Vektorraum mit Skalarprodukt $(V, \langle \cdot, \cdot \rangle)$ Falls ||A(x)|| = ||x|| für alle $x \in V$ gilt, so heißt A orthogonal.

Definition

Sei A eine lineare Abbildung auf einem \mathbb{C} -Vektorraum mit Skalarprodukt $(V, \langle \cdot, \cdot \rangle)$ Falls ||A(x)|| = ||x|| für alle $x \in V$ gilt, so heißt A unitär.

Beispiele

Welche der folgenden linearen Abbildungen sind orthogonal bzw. unitär. Geben sie die entsprechende Nummer ein.

lacktriangle In \mathbb{R}^2 die Drehung gegeben durch die Matrix

$$\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

② In \mathbb{C}^3 die Projektion auf die (x, y)-Ebene

$$(x, y, z) \mapsto (x, y, 0)$$

1 In \mathbb{R}^3 die Spiegelung an der (x, y)-Ebene

$$(x, y, z) \mapsto (x, y, -z)$$

Noch mehr Fragen

Geben sie die Nummer der Aussage ein, der sie zustimmen.

- Eine lineare Abbildung ist invertierbar genau dann wenn sie unitär ist.
- 2 Jede orthogonale lineare Abbildung ist invertierbar.
- 3 Sind alle Eigenwerte einer Matrix 1, so ist die Matrix orthogonal.
- Ist Q orthogonal so gilt $\langle Qu, Qv \rangle = \langle u, v \rangle$.