Mathematisches Institut Prof. Dr. Achim Schädle Dr. Thomas Davi Georg Jansing

29.1.2013

N.T		
Name:		

Einführung in die Optimierung Quicky 3

Quicky 3			
	[wahr	falsch	ι]
Aufgabe 1			
• Für $A \in \mathbb{R}^{n \times n}$ symmetrisch findet das Verfahren des steilsten Abstiegs nach höchstens n Schritten die Lösung von $\min_{x \in \mathbb{R}^n} \{1/2x^TAx + b^Tx\}$	[]
 Für A∈ ℝ^{n×n} symmetrisch findet das cg-Verfahren nach höchstens n Schritten die Lösung von min_{x∈ℝⁿ} {1/2x^TAx + b^Tx} Für A∈ ℝ^{n×n} findet das cg-Verfahren nach höchstens n Schritten 	[]
 Für A ∈ ℝ^{mm} indet das cg-Verlahren nach höchstens die exakte Lösung von Ax = b Für A ∈ ℝ^{n×n} symmetrisch findet das cg-Verfahren nach höchstens 	[]
n Schritten die exakte Lösung von $Ax = b$	[]
Aufgabe 2			
• Quasinewtonverfahren sind Abstiegsverfahren, falls man mit einer positive definten Approximation an die Hessematrix startet.	[1]
• Die DFP-Updateformel liefert ein symmetrisches Rang-2 Update an eine Näherung der inversen Hessematrix.	[]
• Die BFGS-Updateformel liefert ein symmetrisches Rang-2 Update an eine Näherung der Hessematrix.	[]
Beim Trustregion Verfahren müssen die Approxmationen an die Inverse der Hessematrix positiv semidefinit sein, damit das Verfahren konvergiert. B. T. T. Wille and J. William and J. Wille and J. William and J. Wille and J. William and]
• Beim Trustregion Hilfsproblem wird eine quadratische Funktion innerhalb einer <i>n</i> -dimensionalen Kugel minimiert.	[]
Aufgabe 3			
 Der Zulässigkeitsbereich der LP Relaxierung eines ganzzahligen Programms ist ein Polyec Der Zulässigkeitsbereich der Lagrange-Relaxierung eines ganzzahligen 	ler. []
Programms ist ein Polyeder. • Eine konvexe Menge ist beschränkt.	[]
 Der Schnitt zweier konvexe Menge ist konvex (oder leer). Die konvexe Hüllle einer endlichen Menge S ∈ ℝⁿ ist ein Polyeder. 	[]
\bullet Die konvexe Hüllle einer endlichen Menge $S \in \mathbb{R}^n$ ist beschränkt.	[]