

Name:		

Einführung in die Optimierung Quicky 2

[wahr | falsch]

Aufgabe 1

• (P) und (D) können beide zulässig sein.	[]
• (P) kann zulässig und (D) kann unzulässig sein.	[]
• (P) kann unzulässig und (D) kann zulässig sein.	[]
• (P) und (D) können beide unzulässig sein.	[]
• Falls (P) und (D) zlässig sind so stimmen die Zielfunktionswerte überein.	[]

Aufgabe 2

Ein Student möchte im Winter Fruchsäfte kaufen, um seinen Vitaminbedarf zu decken. Pro Woche braucht er 100 mg Vit A, 150 mg Vit. B und 300 mg Vit. C.

In der Cafeteria gibt es:

Apfelsaft mit 13mg Vit. A, 10 mg Vit. B und 100 mg Vit. C;

Orangesaft mit 10mg Vit. A, 15 mg Vit. B und 120 mg Vit. C; und

Tomatensaft mit 50mg Vit. A, 25 mg Vit. B und 30 mg Vit. C.

Wenn x_1 die Menge an Apfelsaft, x_2 die Menge an Orangensaft und x_3 die Menge an Tomatensaft ist, so gilt:

• Der zulässige Bereich ist durch $\{x \in \mathbb{R}^3 : Ax = b, x \geq 0\}$ gegeben	[]
• Der zulässige Bereich ist durch $\{x \in \mathbb{R}^3 : A^T x \ge b, x \ge 0\}$ gegeben.	[]
• Der zulässige Bereich ist durch $\{x \in \mathbb{R}^3 : A^T x \leq b, x \geq 0\}$ gegeben.	[]
• Der zulässige Bereich ist durch $\{x \in \mathbb{R}^3 : Ax \leq b, x \geq 0\}$ gegeben.	[]
• Der zulässige Bereich ist durch $\{x \in \mathbb{R}^3 : Ax \leq b\}$ gegeben.	[]

Hierbei sind

$$A = \begin{pmatrix} 13 & 10 & 50 \\ 10 & 15 & 25 \\ 100 & 120 & 30 \end{pmatrix}, \quad b = \begin{pmatrix} 100 \\ 150 \\ 300 \end{pmatrix}.$$

Aufgabe 3

Sei x^* Optimallösung von $\min\{c^Tx\mid Ax\geq b\,;\; x\geq 0\}$ und sei der Zulässigkeitsbereich des dualen Problems nicht leer, dann gilt für jeden zulässigen Punkt y des dualen Problems:

• $y \le x^*$	[
• $y \ge 0$	[
$\bullet \ c^T x^* \ge b^T y$		
• $c^T x^* \le b^T y$	[
$\bullet \ c^T x^* = b^T y$	[

Aufgabe 4

Bei der Lösung einer Minimierungsaufgabe erhält man das folgende Simplextableau

1	-2	-1	0	0	-5
1	2	1	1	0	2
-1	3	1	0	1	4

- Es ist optimal und der Zielfunktionswert ist -5
- Es ist optimal und der Zielfunktionswert ist 5
- $B = \{4, 5\}$ ist eine zulässige Basis
- Die erste Spalte kann als diejenige Spalte ausgewählt, die neu in die Basis aufgenommen wird.
- Die zweite Spalte kann als diejenige Spalte ausgewählt, die neu in die Basis aufgenommen wird.
- Die dritte Spalte kann als diejenige Spalte ausgewählt, die neu in die Basis aufgenommen wird.

Aufgabe 4

- Für $b \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$ ist die Menge $\{x \in \mathbb{R}^n : b^T x = \alpha\}$ eine Hyperebene.
- Eine Hyperebene ist ein Polyeder
- Der Schnitt zweier Hyperebenen ist eine Hyperebene.
- Der Schnitt zweier Hyperebenen ist Polyeder.
- Sind $x, y \in \mathbb{R}^n$, $x \neq y$, so gibt es eine Hyperebene die x und y trennt.
- Sind $x, y \in \mathbb{R}^n$, $x \neq y$, so gibt es eine Hyperebene die x und y strikt trennt.

Aufgabe 5

Die Multiplikation einer Matrix $A=(a_{i,j})\in\mathbb{R}^{n\times n}$ mit einem Vektor $x=(x_j)\in\mathbb{R}^n$ ist durch $b_i=\sum_{j=1}^n a_{i,j}x_j$ definiert. (b=Ax). Betrachtet man diese Matrixvektormultiplikation als ein Problem der Grösse n, so ist die Komplexität der Matrixvektormultiplikation

- $\begin{array}{c|c} \bullet & \mathcal{O}(n^2) \\ \bullet & \mathcal{O}(n^6) \end{array}$
- $\begin{array}{c|c} \bullet \ \mathcal{O}(n^6) \\ \bullet \ \mathcal{O}(n) \end{array}$
- $\begin{array}{c|c} \bullet \ \mathcal{O}(2^n) \\ \bullet \ \mathcal{O}(\sqrt{n}) \end{array}$

Für jede Aufgabe gibt es diesmal 4 Punkte. Für jede falsche Antwort wird ein Punkt abgezogen.

Das Tempo der Vorlesung ist zu schnell \square , okay \square , zu langsam \square .

Die Übungsaufgaben sind zu einfach \square , gerade richtig \square , zu schwierig \square .