Computergestuetzte Mathematik zur Analysis Lektion 1

Maple rechnet symbolisch

$$\begin{bmatrix}
 > \frac{2}{7} \\
 > \left(\frac{2}{7}\right)^{49} \\
 > 70! \\
 > 500! \\
 > \frac{70!}{2^7} \\
 = \frac{2}{3}; \frac{3}{4}; \frac{3}{2} # Trennzeichen;$$

und numerisch mit beliebiger Praezision

$$= evalf\left(\frac{2}{7}\right)$$

$$= evalf\left(\frac{2}{7}, 200\right)$$

$$= evalf(Pi, 300)$$

Zuordnung / Namen

$$\begin{bmatrix}
> f := (a+b)^{2} \\
> a := 2; b := 5; \\
> f; \\
> a := 'a' \\
> f;$$

Achtung Reihenfolge

> restart;
>
$$a := 5$$
;
> $b := 2$;
> $f := (a + b)^2$
> $a := 'a'$
- f ;

Polynome und rationale Funktionen

```
P := (x^2 + 2 \cdot x + 1)
Q := (x + 1);
P = Q
Simplify(\%) \# \% dito Operator das letzte ausgegebene Ergebnis
<math display="block">factor(P);
```

Konstanten

- > Pi
 > gamma
 > evalf(gamma, 10)
 > Catalan;
 > constants
- Elementare Funktionen

Funktionen

```
[> f := x -> sin(x);

[> plot(f(x), x = 0..10);

[> ff := sin(x);

[> plot(ff, x = 0..10)

[> g := x \rightarrow x^3;

[> plot(g(f(x)), x = -10..10);
```

Summen

```
> sum(j, j = 0..n);
> normal(\%);
> sum(j^2, j = 0..n);
> normal(\%)
> sum(q^j, j = 0..n);
```

Grenzwerte

Integrale

$$f := \frac{1}{7 + t^2}$$

$$\Rightarrow int(f, t);$$

$$\Rightarrow diff(\%, t)$$

$$\Rightarrow simplify(\%);$$

$$\Rightarrow int(\exp(-x^2), x = -infinity..infinity);$$

Hilfe

> ? int > ? EllipticF > ? plot > ? Catalan