MATHEMATISCHES INSTITUT

PROF. DR. JENNIFER RYAN LEONARDO SCANDURRA

9. April 2018

HEINRICH HEINE UNIVERSITÄT DÜSSELDORF

	1	2	3	4	Σ
NAME:					
MAT-NR.:					
NAME:					
Mat-NR.:					

Introduction to Computational Fluid Dynamics – 1. Übungsblatt

Aufgabe 1: Show that the identity

$$\mathbf{u} \wedge (\nabla \wedge \mathbf{u}) = \nabla \left(\frac{1}{2}\mathbf{u}^2\right) - (\mathbf{u} \cdot \nabla)\mathbf{u}.$$

is valid when $\mathbf{u} = y\mathbf{i} - 2z\mathbf{j} + x\mathbf{k}$.

Aufgabe 2: A water tank consists of a cube occupying the region

 $0 \le x \le 1, \qquad 0 \le y \le 1, \qquad 0 \le z \le 1,$

and the pressure of the water inside the tank is given by p = 1 - z. Calculate the force on each face of the cube.

Aufgabe 3: A diver is a distance h below the surface of water, which has constant density, $\rho = 1000 \text{kg m}^{-3}$. At the water surface the air pressure is $p_a = 10^5 \text{N m}^{-2}$. Calculate the pressure experienced by a diver 10m below the surface. At what depth is the pressure three times atmospheric pressure?

Aufgabe 4: In an isothermal atmosphere, the equation of state can be written

 $p = \frac{p_0 \varrho}{\varrho_0}, \qquad p_0, \varrho_0$ are pressure and density at sea level.

If $\rho_0 = 1.3$ kg m⁻³ and $p_0 = 100,000$ m⁻², calculate the pressure at 10,000 mabove sea-level.

Abgabe am 16. April 2018 am Beginn der Vorlesung.

Besprechung in der Übung am 23. April 2018.