

1	2	3	4	Σ

9. April 2018

Name: \qquad
Mat-nr.: \qquad
Name: \qquad
MAT-NR.: \qquad

Introduction to Computational Fluid Dynamics - 1. Übungsblatt

Aufgabe 1: \quad Show that the identity

$$
\mathbf{u} \wedge(\nabla \wedge \mathbf{u})=\nabla\left(\frac{1}{2} \mathbf{u}^{2}\right)-(\mathbf{u} \cdot \nabla) \mathbf{u}
$$

is valid when $\mathbf{u}=y \mathbf{i}-2 z \mathbf{j}+x \mathbf{k}$.
Aufgabe 2: A water tank consists of a cube occupying the region

$$
0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad 0 \leq z \leq 1
$$

and the pressure of the water inside the tank is given by $p=1-z$. Calculate the force on each face of the cube.
Aufgabe 3: A diver is a distance h below the surface of water, which has constant density, $\varrho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$. At the water surface the air pressure is $p_{a}=10^{5} \mathrm{~N} \mathrm{~m}^{-2}$. Calculate the pressure experienced by a diver 10 m below the surface. At what depth is the pressure three times atmospheric pressure?
Aufgabe 4: In an isothermal atmosphere, the equation of state can be written

$$
p=\frac{p_{0} \varrho}{\varrho_{0}}, \quad p_{0}, \varrho_{0} \quad \text { are pressure and density at sea level. }
$$

If $\varrho_{0}=1.3 \mathrm{~kg} \mathrm{~m}^{-3}$ and $p_{0}=100,000 \mathrm{~N} \mathrm{~m}^{-2}$, calculate the pressure at $10,000 \mathrm{~m}$ above sea-level.

Abgabe am 16. April 2018 am Beginn der Vorlesung.

Besprechung in der Übung am 23. April 2018.

